【題目】如圖,四棱錐中,底面為菱形,,,點的中點.

(1)證明:;

(2)若點為線段的中點,平面平面,求二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】分析:(1)由正三角形的性質(zhì)可得,由等腰三角形的性質(zhì)可得,由線面垂直的判定定理可得平面,從而可得結(jié)論;(2)由(1)知,結(jié)合面面垂直的性質(zhì)可得,平面,以為坐標原點,分別以,,所在直線為,,軸,建立空間直角坐標系,求出平面的一個法向量取平面的一個法向量,利用空間向量夾角余弦公式可得結(jié)果.

詳解(1)連接,

因為,,所以為正三角形,又點的中點,所以.

又因為,的中點,所以.

,所以平面,又平面,所以.

(2)由(1)知.又平面平面,交線為,所以平面

為坐標原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標系,

,,,,,,

設平面的一個法向量為,

可得,

由(1)知平面,則取平面的一個法向量,

,故二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線的右焦點且傾斜角為的直線與圓相切,則該雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從集合的所有非空子集中,等可能地取出個.

(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;

(2)若,記所取子集的元素個數(shù)之差為,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為2.

(1)求函數(shù)的解析式,并求它的對稱中心的坐標;

(2)先將函數(shù)保持橫坐標不變,縱坐標變?yōu)樵瓉淼?/span>)倍,再將圖象向左平移)個單位,得到的函數(shù)為偶函數(shù).若對任意的,總存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為x3y+30

(Ⅰ)若直線l1ly軸上的截距相等,且l1的傾斜角是l的傾斜角的兩倍,求直線l1的一般式方程;

(Ⅱ)若直線l2過點(,2),且l2l垂直求直線l2的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.

(1)求拋物線的方程;

(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在國慶周年慶典活動中,東城區(qū)教育系統(tǒng)近名師生參與了國慶中心區(qū)合唱、方陣群眾游行、聯(lián)歡晚會及萬只氣球保障等多項重點任務.設是參與國慶中心區(qū)合唱的學校,是參與27方陣群眾游行的學校,是參與國慶聯(lián)歡晚會的學校.請用上述集合之間的運算來表示:①既參與國慶中心區(qū)合唱又參與27方陣群眾游行的學校的集合為_____;②至少參與國慶中心區(qū)合唱與國慶聯(lián)歡晚會中一項的學校的集合為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在D上的函數(shù)fx)如果滿足:對任意xD,存在常數(shù)M0,都有|fx)|≤M成立,則稱fx)是D上的有界函數(shù),其中M稱為函數(shù)fx)的一個上界.已知函數(shù),

1)求函數(shù)fx)在區(qū)間上的所有上界構(gòu)成的集合;

2)若函數(shù)gx)在[0,+∞)上是以7為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為,其范圍為,分為五個級別, 暢通; 基本暢通; 輕度擁堵; 中度擁堵; 嚴重擁堵.早高峰時段(),從某市交通指揮中心隨機選取了三環(huán)以內(nèi)的50個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖.

(1)這50個路段為中度擁堵的有多少個?

(2)據(jù)此估計,早高峰三環(huán)以內(nèi)的三個路段至少有一個是嚴重擁堵的概率是多少?

(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘,中度擁堵為42分鐘,嚴重擁堵為60分鐘,求此人所用時間的數(shù)學期望.

查看答案和解析>>

同步練習冊答案