【題目】已知二次函數(shù)滿足,且.
(1)求的解析式;
(2)當時,不等式有解,求實數(shù)的取值范圍;
(3)設,,求的最大值.
【答案】(1);(2);(3)
【解析】
試題(1)設二次函數(shù)一般式,根據(jù)待定系數(shù)法求出a,b,c(2)不等式恒成立一般轉化為對應函數(shù)最值:x2-3x+1的最小值>m,再根據(jù)二次函數(shù)性質求x2-3x+1的最小值得實數(shù)m的范圍;(3)根據(jù)對稱軸與定義區(qū)間位置關系,分類討論函數(shù)取最大值的情況
試題解析:解:(1)令f(x)=ax2+bx+c(a≠0),代入已知條件,
得:
∴
∴f(x)=x2-x+1.
(2)當x∈[-1,1]時,f(x)>2x+m恒成立,
即x2-3x+1>m恒成立;
令g(x)=x2-3x+1=2-,x∈[-1,1].
則對稱軸:x=[-1,1],g(x)min=g(1)=-1,
∴m<-1.
(3)G(t)=f(2t+a)=4t2+(4a-2)t+a2-a+1,t∈[-1,1],對稱軸為:t=.
①當≥0時,即:a≤;如圖1:
G(t)max=G(-1)=4-(4a-2)+a2-a+1=a2-5a+7,
②當<0時,
即:a>;如圖2:
G(t)max=G(1)=4+(4a-2)+a2-a+1=a2+3a+3,
綜上所述:
G(t)max=
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點F1與拋物線y2=﹣4x的焦點重合,橢圓E的離心率為 ,過點M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點,點P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線C:y2=2px的焦點為F,拋物線上一定點Q(1,2).
(1)求拋物線C的方程及準線l的方程;
(2)過焦點F的直線(不經過Q點)與拋物線交于A,B兩點,與準線l交于點M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個結論:
①已知X服從正態(tài)分布N(0,σ2),且P(﹣2≤X≤2)=0.6,則P(X>2)=0.2;
②若命題 ,則¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直線l1:ax+3y﹣1=0,l2:x+by+1=0,則l1⊥l2的充要條件是 .
其中正確的結論的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r產品進行二次加工后進行推廣促銷,預計該批產品銷售量萬件(生產量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關系為(其中推廣促銷費不能超過5千元).已知加工此農產品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產品的利潤最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com