【題目】已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(),且點(diǎn)F(,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線與橢圓C交于B,D兩點(diǎn),滿足,且原點(diǎn)到直線l的距離為?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
【答案】(1);(2)不存在符合條件的直線.
【解析】
(1)求出左焦點(diǎn)的坐標(biāo),求出到左焦點(diǎn)距離,再求出到右焦點(diǎn)的距離,最后利用橢圓的定義求出橢圓方程;
(2)假設(shè)存在這樣的直線,設(shè)出直線的方程, 原點(diǎn)到直線l的距離為,可得到等式,該直線方程與橢圓方程聯(lián)立,根據(jù)根的判別式,可以計(jì)算出直線l的斜率的取值范圍,把向量式子
用數(shù)量積的坐標(biāo)表示公式化簡(jiǎn),結(jié)合根與系數(shù)關(guān)系可求出該直線的斜率,檢驗(yàn)該值在不在斜率的取值范圍中,最后再考慮直線不存在斜率的情況,這樣就可以得出正確結(jié)論.
(1)設(shè)橢圓C的方程為,則左焦點(diǎn)為,
在直角三角形中,可求,∴,
故橢圓C的方程為.
(2)假設(shè)存在符合題意的直線l,其方程為,由原點(diǎn)到l的距離為得:
.
聯(lián)立方程,得.
則,,.
設(shè),,
則,
解得.
當(dāng)斜率不存在時(shí)l的方程為,易求得.
綜上,不存在符合條件的直線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國(guó)南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí), 符合條件的共有_____個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),拋物線:的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若, 求使方程有唯一解的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓的方程為,點(diǎn)為圓上的動(dòng)點(diǎn),過點(diǎn)的直線被圓截得的弦長(zhǎng)為.
(1)求直線的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)。,,,是中的數(shù)所成的數(shù)列,它包含的不以1結(jié)尾的任何排列,即對(duì)于的四個(gè)數(shù)的任意一個(gè)不以1結(jié)尾的排列,,都有,,,,使得,并且,求這種數(shù)列的項(xiàng)數(shù)的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):
單價(jià)(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊(cè)) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:
(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書的成本是12元,書店為了獲得最大利潤(rùn),該冊(cè)書的單價(jià)應(yīng)定為多少元?
附:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長(zhǎng)為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個(gè)三棱錐.求:
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com