【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進(jìn)行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:

(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?

附:,,.

【答案】(1) (2) 當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤

【解析】

(l)先計算的平均值,再代入公式計算得到

(2)計算利潤為:計算最大值.

解:(1),

,

所以的回歸直線方程為:

(2)設(shè)獲得的利潤為,

,

因?yàn)槎魏瘮?shù)的開口向下,

所以當(dāng)時,取最大值,

所以當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為的學(xué)生成績樣本,得頻率分布表如下:

組號

分組

頻率

頻數(shù)

第一組

第二組

第三組

第四組

第五組

合計

1)寫出表中①、②位置的數(shù)據(jù);

2)估計成績不低于分的學(xué)生約占多少;

3)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形,E為的中點(diǎn),將沿翻折到的位置,平面,的中點(diǎn),則在翻折過程中,下列結(jié)論正確的是( )

A.恒有 平面

B.B與M兩點(diǎn)間距離恒為定值

C.三棱錐的體積的最大值為

D.存在某個位置,使得平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時,,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)

(1)解不等式:

(2)對任意,恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,,,分別是,中點(diǎn),,.現(xiàn)將沿折起,如圖2所示,使二面角的中點(diǎn).

1)求證:面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知是遞增數(shù)列,其前項和為,,且

)求數(shù)列的通項;

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;

)設(shè),若對于任意的,不等式

恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:極坐標(biāo)與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為 ,曲線C2的極坐標(biāo)方程為ρsinθ=a(a>0),射線 與曲線C1分別交異于極點(diǎn)O的四點(diǎn)A,B,C,D.
(Ⅰ)若曲線C1關(guān)于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標(biāo)方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.

查看答案和解析>>

同步練習(xí)冊答案