【題目】已知函數(shù),則關(guān)于的方程)的實(shí)根個(gè)數(shù)(

A.B. C. D.

【答案】A

【解析】

先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,畫出函數(shù)的大致圖象,令,則,由△>0可知方程有兩個(gè)不相等的實(shí)根.設(shè)為,

由韋達(dá)定理得:,,不妨設(shè),,對,的大小分情況討論,結(jié)合函數(shù)的圖象即可判斷關(guān)于的方程)的實(shí)根個(gè)數(shù).

解:∵函數(shù)

得:,

∴當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,

,

∴函數(shù)的大致圖象,如圖所示:

,

,則關(guān)于的方程變?yōu)?/span>,

,∴方程有兩個(gè)不相等的實(shí)根.設(shè)為,

由韋達(dá)定理得:,不妨設(shè),,

①當(dāng)時(shí),∵,∴,此時(shí)關(guān)于的方程的實(shí)根個(gè)數(shù)為3個(gè),

②當(dāng),∵,∴,此時(shí)關(guān)于的方程的實(shí)根個(gè)數(shù)為3個(gè),

③當(dāng),∵,∴,此時(shí)關(guān)于的方程的實(shí)根個(gè)數(shù)為3個(gè),

綜上所述,關(guān)于的方程的實(shí)根個(gè)數(shù)為3個(gè),

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)區(qū)間情況;

2)若函數(shù)有且只有兩個(gè)零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時(shí)代悄然來臨,為了研究中國手機(jī)市場現(xiàn)狀,中國信通院統(tǒng)計(jì)了2019年手機(jī)市場每月出貨量以及與2018年當(dāng)月同比增長的情況,得到如下統(tǒng)計(jì)圖,根據(jù)該統(tǒng)計(jì)圖,下列說法錯(cuò)誤的是(

A.2019年全年手機(jī)市場出貨量中,5月份出貨量最多

B.2019年下半年手機(jī)市場各月份出貨量相對于上半年各月份波動(dòng)小

C.2019年全年手機(jī)市場總出貨量低于2018年全年總出貨量

D.201812月的手機(jī)出貨量低于當(dāng)年8月手機(jī)出貨量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)為奇函數(shù),且當(dāng)x≥0時(shí),fx)=excosx,則不等式f2x1+fx2)>0的解集為( )

A.(﹣,1B.(﹣C.,+∞D.1,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),分別為橢圓C的左、右焦點(diǎn)且

1)求橢圓C的方程;

2)直線平行于OPO為原點(diǎn)),且與橢圓C交于兩點(diǎn)A、B,與直線x2交于點(diǎn)MM介于A、B兩點(diǎn)之間).

I)當(dāng)PAB面積最大時(shí),求的方程;

II)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說法中錯(cuò)誤的是(

A.獲得參與獎(jiǎng)的人數(shù)最多

B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高

C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍

D.獎(jiǎng)金平均數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軸正半軸上一點(diǎn)做直線與拋物線交于,,兩點(diǎn),且滿足,過定點(diǎn)與點(diǎn)做直線與拋物線交于另一點(diǎn),過點(diǎn)與點(diǎn)做直線與拋物線交于另一點(diǎn).設(shè)三角形的面積為,三角形的面積為.

1)求正實(shí)數(shù)的取值范圍;

2)連接,兩點(diǎn),設(shè)直線的斜率為

(。┊(dāng)時(shí),直線軸的縱截距范圍為,則求的取值范圍;

(ⅱ)當(dāng)實(shí)數(shù)在(1)取到的范圍內(nèi)取值時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有四大國粹:京劇、武術(shù)、中醫(yī)和書法.某大學(xué)開設(shè)這四門課供學(xué)生選修,男生甲選其中三門課進(jìn)行學(xué)習(xí),已知他選修了京劇,則他選修書法的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考取消文理科,實(shí)行“3+3”,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年),并把調(diào)查結(jié)果制成如表:

1)請根據(jù)上表完成下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為對新高考的了解與年齡(中青年、中老年)有關(guān)?

附:K2.

2)現(xiàn)采用分層抽樣的方法從中老年人中抽取8人,再從這8人中隨機(jī)抽取2人進(jìn)行深入調(diào)查,求事件A:“恰有一人年齡在[45,55)”發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案