【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過(guò)10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場(chǎng)電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入)問(wèn):
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問(wèn)在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場(chǎng)的凈收人最多?

【答案】
(1)解:電影院共有1000個(gè)座位,電影院放一場(chǎng)電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,

∴x>5.75,∴票價(jià)最低為6元,

票價(jià)不超過(guò)10元時(shí):

y=1000x﹣5750,(6≤x≤10的整數(shù)),

票價(jià)高于10元時(shí):

y=x[1000﹣30(x﹣10)]﹣5750

=﹣30x2+1300x﹣5750,

解得:5<x<38 ,

∴y=﹣30x2+1300x﹣5750,(10<x≤38的整數(shù))


(2)解:對(duì)于y=1000x﹣5750,(6≤x≤10的整數(shù)),

x=10時(shí):y最大為4250元,

對(duì)于y=﹣30x2+1300x﹣5750,(10<x≤38的整數(shù));

當(dāng)x=﹣ ≈21.6時(shí),y最大,

∴票價(jià)定為22元時(shí):凈收人最多為8830元


【解析】(1)根據(jù)x的范圍,分別求出函數(shù)表達(dá)式;(2)分別求出兩個(gè)函數(shù)的最大值,從而綜合得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
(1)求 的值;
(2)將函數(shù)y=f(x)的圖象向右平移 個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.

(1)求實(shí)數(shù)b的值;
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=
(1)證明:f(x)是定義域內(nèi)的增函數(shù);
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng)
①求數(shù)列{an}的通項(xiàng)公式;
②設(shè)bn=anlog2an , 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“一帶一路”的建設(shè)中,中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料下表:

(1)在散點(diǎn)圖中號(hào)舊井位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸線方程為,求,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(1)中的值之差(即:)不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打井,請(qǐng)判斷可否使用舊井?(參考公式和計(jì)算結(jié)果:,)

(3)設(shè)出油量與鉆探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,在原有井號(hào)的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬(wàn)元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬(wàn)元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.

(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案