【題目】某校決定為本校上學(xué)所需時(shí)間不少于30分鐘的學(xué)生提供校車(chē)接送服務(wù).為了解學(xué)生上學(xué)所需時(shí)間,從全校600名學(xué)生中抽取50人統(tǒng)計(jì)上學(xué)所需時(shí)間(單位:分鐘),將600人隨機(jī)編號(hào)為001,002,…,600,抽取的50名學(xué)生上學(xué)所需時(shí)間均不超過(guò)60分鐘,將上學(xué)所需時(shí)間按如下方式分成六組,第一組上學(xué)所需時(shí)間在[0,10),第二組上學(xué)所需時(shí)間在[10,20)…,第六組上學(xué)所需時(shí)間在[50,60],得到各組人數(shù)的頻率分布直方圖,如下圖

(1)若抽取的50個(gè)樣本是用系統(tǒng)抽樣的方法得到,且第一個(gè)抽取的號(hào)碼為006,則第五個(gè)抽取的號(hào)碼是多少?

(2)若從50個(gè)樣本中屬于第四組和第六組的所有人中隨機(jī)抽取2人,設(shè)他們上學(xué)所需時(shí)間分別為ab,求滿(mǎn)足的事件的概率;

(3)設(shè)學(xué)校配備的校車(chē)每輛可搭載40名學(xué)生,請(qǐng)根據(jù)抽樣的結(jié)果估計(jì)全校應(yīng)有多少輛這樣的校車(chē)?

【答案】⑴054;⑵;⑶3

【解析】

(1)根據(jù)抽取的50個(gè)樣本,則應(yīng)將600人平均分成50組,每組12人,然后利用系統(tǒng)抽樣的原則,每組中抽出的號(hào)碼應(yīng)該等距即可;

(2)先由直方圖知第4組頻率和第6組頻率,然后利用頻數(shù)=樣本容量×頻率,求出第4組和第6組的人數(shù),然后利用列舉法將從這六人中隨機(jī)抽取2人的所有情況逐一列舉出來(lái),然后將滿(mǎn)足條件的也列舉出來(lái),最后根據(jù)古典概型的計(jì)算公式進(jìn)行求解即可.

(3)利用樣本估計(jì)總體的方法,先算出全校上學(xué)時(shí)間不少于30分鐘的學(xué)生約有多少人,從而估計(jì)全校需要幾輛校車(chē).

(1)600÷50=12,第一段的號(hào)碼為006,

第五段抽取的數(shù)是6+(5-1)×12=54,即第五段抽取的號(hào)碼是054

(2)第四組人數(shù)=0.008×10×50=4,設(shè)這4人分別為A、B、C、D,

第六組人數(shù)=0.004×10×50=2,設(shè)這2人分別為,

隨機(jī)抽取2人的可能情況是:

AB AC AD BC CD xy Ax Ay Bx By Cx Cy Dx Dy

一共15種情況,其中他們上學(xué)所需時(shí)間滿(mǎn)足的情況有8種,

所以滿(mǎn)足的事件的概率,

(3)全校上學(xué)所需時(shí)間不少于30分鐘的學(xué)生約有:

600×(0.008+0.008+0.004)×10=120人,

所以估計(jì)全校需要3輛校車(chē).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.

1)設(shè),判斷上是否為有界函數(shù),若是,請(qǐng)說(shuō)明理由,并寫(xiě)出的所有上界的集合;若不是,也請(qǐng)說(shuō)明理由;

2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年是中國(guó)成立70周年,也是全面建成小康社會(huì)的關(guān)鍵之年.為了迎祖國(guó)70周年生日,全民齊心奮力建設(shè)小康社會(huì),某校特舉辦喜迎國(guó)慶,共建小康知識(shí)競(jìng)賽活動(dòng).下面的莖葉圖是參賽兩組選手答題得分情況,則下列說(shuō)法正確的是(

A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)

C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(理)在長(zhǎng)方體中,,,,點(diǎn)在棱上移動(dòng).

1)探求多長(zhǎng)時(shí),直線與平面角;

2)點(diǎn)移動(dòng)為棱中點(diǎn)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行一個(gè)比賽類(lèi)型的娛樂(lè)節(jié)目,AB兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績(jī)作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將A隊(duì)第六位選手的成績(jī)沒(méi)有給出,并且告知大家B隊(duì)的平均分比A隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績(jī)不少于21分,則獲得晉級(jí)”.

1)根據(jù)莖葉圖中的數(shù)據(jù),求出A隊(duì)第六位選手的成績(jī);

2)主持人從A隊(duì)所有選手成績(jī)中隨機(jī)抽取2個(gè),求至少有一個(gè)為晉級(jí)的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿(mǎn)足.又曲線上的點(diǎn)AB滿(mǎn)足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前n項(xiàng)組成集合,從集合中任取個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),例如:對(duì)于數(shù)列,當(dāng)時(shí),時(shí),;

1)若集合,求當(dāng)時(shí),的值;

2)若集合,證明:時(shí)集合時(shí)集合(為了以示區(qū)別,用表示)有關(guān)系式,其中;

3)對(duì)于(2)中集合.定義,求(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面是菱形,,,邊的中點(diǎn),點(diǎn)在線段.

1)證明:平面平面;

2)若平面,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案