【題目】已知三棱錐底面的3個(gè)頂點(diǎn)在球的同一個(gè)大圓上,且為正三角形,為該球面上的點(diǎn),若三棱錐體積的最大值為,則球的表面積為( )
A. B. C. D.
【答案】B
【解析】
由題意正三棱錐P﹣ABC的四個(gè)頂點(diǎn)都在同一球面上,從而三角形ABC的中心就是球心O,PO是球的半徑,也是正三棱錐的高,利用正三棱錐P﹣ABC求得球的半徑,即可求出球O的表面積.
正三棱錐P﹣ABC的四個(gè)頂點(diǎn)都在同一球面上,
其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)大圓上.因?yàn)轭}目中涉及到體積最大值,故ABC的中心就是球心O,PO是球的半徑,也是正三棱錐的高,設(shè)為R,
底面三角形的邊長(zhǎng)設(shè)為a,由正弦定理得到,三角形的面積為,椎體的體積為
則球O的表面積是4πR2=4π×4=16π.
故答案為:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, ,是的內(nèi)心,若,其中,動(dòng)點(diǎn)的軌跡所覆蓋的面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)入冬天,大氣流動(dòng)性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門(mén)試圖探究車(chē)流量與空氣質(zhì)量的相關(guān)性,以確定是否對(duì)車(chē)輛實(shí)施限行.為此,環(huán)保部門(mén)采集到該城市過(guò)去一周內(nèi)某時(shí)段車(chē)流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
車(chē)流量(x萬(wàn)輛) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
空氣質(zhì)量指數(shù)y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(1)根據(jù)表中周一到周五的數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?
附:回歸方程中斜率和截距最小二乘估計(jì)公式分別為:
其中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上的點(diǎn)到焦點(diǎn)的距離為.
(1)求,的值;
(2)設(shè),是拋物線上分別位于軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且,其中為坐標(biāo)原點(diǎn).求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過(guò)4噸時(shí),每噸為元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸為元,每月甲、乙兩戶共交水費(fèi)元,已知甲、乙兩戶該月用水量分別為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若甲、乙兩戶該月共交水費(fèi)元,分別求出甲、乙兩戶該月的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義區(qū)間、、、的長(zhǎng)度均為,已知不等式的解集為.
(1)求的長(zhǎng)度;
(2)函數(shù)(,)的定義域與值域都是(),求區(qū)間的最大長(zhǎng)度;
(3)關(guān)于的不等式的解集為,若的長(zhǎng)度為6,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一名高二學(xué)生盼望2020年進(jìn)入某名牌大學(xué)學(xué)習(xí),假設(shè)該名牌大學(xué)有以下條件之一均可錄。孩2020年2月通過(guò)考試進(jìn)入國(guó)家數(shù)學(xué)奧賽集訓(xùn)隊(duì)(集訓(xùn)隊(duì)從2019年10月省數(shù)學(xué)競(jìng)賽一等獎(jiǎng)中選拔);②2020年3月自主招生考試通過(guò)并且達(dá)到2020年6月高考重點(diǎn)分?jǐn)?shù)線,③2020年6月高考達(dá)到該校錄取分?jǐn)?shù)線(該校錄取分?jǐn)?shù)線高于重點(diǎn)線),該學(xué)生具備參加省數(shù)學(xué)競(jìng)賽、自主招生和高考的資格且估計(jì)自己通過(guò)各種考試的概率如下表
省數(shù)學(xué)競(jìng)賽一等獎(jiǎng) | 自主招生通過(guò) | 高考達(dá)重點(diǎn)線 | 高考達(dá)該校分?jǐn)?shù)線 |
0.5 | 0.6 | 0.9 | 0.7 |
若該學(xué)生數(shù)學(xué)競(jìng)賽獲省一等獎(jiǎng),則該學(xué)生估計(jì)進(jìn)入國(guó)家集訓(xùn)隊(duì)的概率是0.2.若進(jìn)入國(guó)家集訓(xùn)隊(duì),則提前錄取,若未被錄取,則再按②、③順序依次錄取:前面已經(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過(guò)且高考達(dá)重點(diǎn)線才能錄。
(1)求該學(xué)生參加自主招生考試的概率;
(2)求該學(xué)生參加考試的次數(shù)的分布列及數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A. 命題“若,則”的逆否命題為“若,則”
B. 若命題 “, ”,則命題的否定為“, ”
C. “”是“”的充分不必要條件
D. “”是“直線與直線互為垂直”的充要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com