【題目】進(jìn)入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對車輛實(shí)施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

周六

周日

車流量(x萬輛)

10

9

9.5

10.5

11

8

8.5

空氣質(zhì)量指數(shù)y

78

76

77

79

80

73

75

(1)根據(jù)表中周一到周五的數(shù)據(jù),求關(guān)于的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2,則認(rèn)為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

附:回歸方程中斜率和截距最小二乘估計公式分別為:

其中:

【答案】(1);(2)是可靠的.

【解析】

(1) 分別求出x,y的平均數(shù),求出回歸系數(shù)a,b的值,求出回歸方程即可;

(2) 求出殘差,結(jié)合誤差均不超過2,判斷即可.

1,

,

y關(guān)于x的線性回歸方程為

2)當(dāng)x=8時,.滿足|74-73|=1<2,

當(dāng)x=8.5時,.滿足|75-75|=0<2

所得的線性回歸方程是可靠的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求出函數(shù)的定義域;

2)若當(dāng)時,上恒正,求出的取值范圍;

3)若函數(shù)上單調(diào)遞增,求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級800名學(xué)生參加了地理學(xué)科考試,現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)求每個學(xué)生的成績被抽中的概率;

2)估計這次考試地理成績的平均分和中位數(shù);

3)估計這次地理考試全年級80分以上的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校設(shè)計了一個實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題的便可提交通過.已知6道備選題中考生甲有4題能正確完成,2題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計算均值;

(2)試從兩位考生正確完成題數(shù)的均值及至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司想了解對某產(chǎn)品投入的宣傳費(fèi)用與該產(chǎn)品的營業(yè)額的影響.右圖是以往公司對該產(chǎn)品的宣傳費(fèi)用 (單位:萬元)和產(chǎn)品營業(yè)額 (單位:萬元)的統(tǒng)計折線圖.

(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費(fèi)用與產(chǎn)品營業(yè)額的關(guān)系,請用相關(guān)系數(shù)加以說明;

(Ⅱ)建立產(chǎn)品營業(yè)額關(guān)于宣傳費(fèi)用的回歸方程;

(Ⅲ)若某段時間內(nèi)產(chǎn)品利潤與宣傳費(fèi)和營業(yè)額的關(guān)系為應(yīng)投入宣傳費(fèi)多少萬元才能使利潤最大,并求最大利潤. (計算結(jié)果保留兩位小數(shù))

參考數(shù)據(jù):,,,,

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘法估計公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機(jī)摸出一個球,在摸出的2個球中,若都是紅球,則獲得一等獎;若只有1個紅球,則獲得二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機(jī)會,記該顧客在3次抽獎中或一等獎的次數(shù)為,求的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為矩形, 且側(cè)面平面,側(cè)面平面,為正三角形,

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一堆產(chǎn)品正品與次品都多于2中任取2件,觀察正品件數(shù)和次品件數(shù),則下列說法:

恰好有1件次品恰好2件都是次品是互斥事件

至少有1件正品全是次品是對立事件

至少有1件正品至少有1件次品是互斥事件但不是對立事件

至少有1件次品全是正品是互斥事件也是對立事件

其中正確的有______填序號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體上任意選擇個頂點(diǎn),然后將它們兩兩相連,則可能組成的幾何圖形為_________(寫出所有正確結(jié)論的編號).

①矩形;②不是矩形的平行四邊形;③有三個面為等腰直角三角形,有一個面為等邊三角形的四面體;④每個面都是等邊三角形的四面體;⑤每個面都是直角三角形的四面體.

查看答案和解析>>

同步練習(xí)冊答案