設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)在直線上,.(1)證明數(shù)列為等比數(shù)列,并求出其通項(xiàng);(2)設(shè),記,求數(shù)列的前和.
(1)證明略,;(2).
解析試題分析:(1)要證明數(shù)列是等比數(shù)列,只需證明數(shù)列中的項(xiàng)后一項(xiàng)除以前一項(xiàng)是常數(shù);(2)先利用已知條件把的通項(xiàng)公式找到,再利用錯(cuò)位相減法求出.
試題解析:(1)∵ 1分
∴時(shí),∴ 2分
時(shí),, 3分
兩式相減得:,, 5分
∴是以為首項(xiàng),為公比的等比數(shù)列. 6分
∴ 7分
(2),則, 9分
①
② 10分
①-②得: 11分
13分
∴ 14分.
考點(diǎn):1.等比數(shù)列的證明;2.錯(cuò)位相減法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,數(shù)列是公比為的等比數(shù)列, 是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)若,記為數(shù)列的前項(xiàng)和,且,),點(diǎn)在函數(shù)的圖像上,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)單調(diào)遞減數(shù)列前項(xiàng)和,且;
(1)求的通項(xiàng)公式;
(2)若,求前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列滿足,是,的等差中項(xiàng)。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com