已知數(shù)列的前項(xiàng)和為,數(shù)列是公比為的等比數(shù)列, 是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
(1);(2).
解析試題分析:(1)先根據(jù)等比數(shù)列公式求出與的關(guān)系式,然后利用與的遞推關(guān)系求出,從而再求出.(2)根據(jù)數(shù)列通項(xiàng)公式的特點(diǎn)用錯(cuò)位相減法求數(shù)列前項(xiàng)和.
試題解析:(1)解:∵是公比為的等比數(shù)列,
∴. 1分
∴.
從而,. 3分
∵是和的等比中項(xiàng)
∴,解得或. 4分
當(dāng)時(shí),,不是等比數(shù)列, 5分
∴.
∴. 6分
當(dāng)時(shí),. 7分
∵符合,
∴. 8分
(2)解:∵,
∴. ① 9分
.② 10分
①②得 11分
12分
. 13分
∴. 14分
考點(diǎn):1、與的遞推關(guān)系的應(yīng)用,2、錯(cuò)位相減法求數(shù)列前項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,
(1)求證:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
(Ⅰ)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{}的前n項(xiàng)和為,已知對(duì)任意的,點(diǎn),均在函數(shù)且均為常數(shù))的圖像上.
(1)求r的值;
(2)當(dāng)b=2時(shí),記 求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和是,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求適合方程 的正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,已知,.
(1)求、并判斷能否為等差或等比數(shù)列;
(2)令,求證:為等比數(shù)列;
(3)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)在直線上,.(1)證明數(shù)列為等比數(shù)列,并求出其通項(xiàng);(2)設(shè),記,求數(shù)列的前和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,數(shù)列滿足,數(shù)列滿足;數(shù)列為公比大于的等比數(shù)列,且為方程的兩個(gè)不相等的實(shí)根.
(Ⅰ)求數(shù)列和數(shù)列的通項(xiàng)公式;
(Ⅱ)將數(shù)列中的第項(xiàng),第項(xiàng),第項(xiàng),……,第項(xiàng),……刪去后剩余的項(xiàng)按從小到大的順序排成新數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com