【題目】已知數(shù)列{an}的前n項(xiàng)和 ,其中n∈N* . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)若對(duì)于任意正整數(shù)n,都有 ,求實(shí)數(shù)λ的最小值.

【答案】解:(Ⅰ)當(dāng)n=1時(shí),a1=S1=﹣3;

當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=n2﹣4n﹣(n﹣1)2+4(n﹣1)=2n﹣5,

因?yàn)閍1=﹣3符合上式,

所以an=2n﹣5(n∈N*).

(Ⅱ)由(Ⅰ)得

所以Tn=b1+b2+…+bn=(2﹣3+1)+(2﹣1+1)+…+(22n﹣5+1)

=(2﹣3+2﹣1+…+22n﹣5)+n

= =

(Ⅲ)

= =

當(dāng)n=1時(shí), ,(注:此時(shí) ),

當(dāng)n≥2時(shí),因?yàn)? ,

所以

則n=1時(shí),取得最大值.

因?yàn)閷?duì)于任意正整數(shù)n,都有

由題意,得 ;

所以λ的最小值為


【解析】(Ⅰ)由數(shù)列的遞推式:當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1,計(jì)算即可得到所求通項(xiàng);(Ⅱ)由(Ⅰ)得 .運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列的求和公式,計(jì)算即可得到所求和;(Ⅲ)運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)整理,判斷數(shù)列的最值,再由恒成立思想,即可得到所求實(shí)數(shù)λ的最小值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點(diǎn)A(1,3),AB邊上的中線CM所在直線方程為2x﹣3y+2=0,AC邊上的高BH所在直線方程為2x+3y﹣9=0.求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锳,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個(gè)等值域變換?說明你的理由; ① ;
②f(x)=x2﹣x+1,x∈R,x=g(t)=2t , t∈R.
(2)設(shè)f(x)=log2x的定義域?yàn)閤∈[2,8],已知 是y=f(x)的一個(gè)等值域變換,且函數(shù)y=f[g(t)]的定義域?yàn)镽,求實(shí)數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a3=12,a11=﹣5,且任意連續(xù)三項(xiàng)的和均為11,則a2017=;設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,則使得Sn≤100成立的最大整數(shù)n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(2a+1)x+b,其中a,b∈R. (Ⅰ)當(dāng)a=1,b=﹣4時(shí),求函數(shù)f(x)的零點(diǎn);
(Ⅱ)如果函數(shù)f(x)的圖象在直線y=x+2的上方,證明:b>2;
(Ⅲ)當(dāng)b=2時(shí),解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 若對(duì)任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為( )
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件樣本,測(cè)量這些樣本的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)
值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125]

頻數(shù)

6

26

38

22

8

則樣本的該項(xiàng)質(zhì)量指標(biāo)值落在[105,125]上的頻率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱 中,底面 是邊長(zhǎng)為2的正方形, 分別為線段 , 的中點(diǎn).

(1)求證: ||平面
(2)四棱柱 的外接球的表面積為 ,求異面直線 所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)是定義在(0,+∞)上的函數(shù),當(dāng)x>1時(shí),f(x)>0,且滿足
(1)求f(1)的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若f(2)=1,解不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案