【題目】已知△ABC的頂點(diǎn)A(1,3),AB邊上的中線CM所在直線方程為2x﹣3y+2=0,AC邊上的高BH所在直線方程為2x+3y﹣9=0.求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線BC的方程.
【答案】
(1)解:由A(1,3)及AC邊上的高BH所在的直線方程2x+3y﹣9=0
得AC所在直線方程為3x﹣2y+3=0
又AB邊上的中線CM所在直線方程為2x﹣3y+2=0
由 得C(﹣1,0)
(2)解:設(shè)B(a,b),又A(1,3)M是AB的中點(diǎn),則M(
由已知得 得B(3,1)
又C(﹣1,0)得直線BC的方程為x﹣4y+1=0
【解析】(1)先求直線AC的方程,然后求出C的坐標(biāo).(2)設(shè)出B的坐標(biāo),求出M代入直線方程為2x﹣3y+2=0,與直線為2x+3y﹣9=0.聯(lián)立求出B的坐標(biāo)然后可得直線BC的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車的車流量y(千輛/小時(shí))與汽車的平均速度υ(千米/小時(shí))之間的函數(shù)關(guān)系為:y= (υ>0).
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度υ為多少時(shí),車流量最大?最大車流量為多少?(保留分?jǐn)?shù)形式)
(2)若要求在該時(shí)段內(nèi)車流量超過10千輛/小時(shí),則汽車的平均速度應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元),有如下的統(tǒng)計(jì)資料:
x | 1 | 2 | 3 | 4 | 5 |
y | 5 | 6 | 7 | 8 | 10 |
由資料可知y對x呈線性相關(guān)關(guān)系,且線性回歸方程為 ,請估計(jì)使用年限為20年時(shí),維修費(fèi)用約為( )
A.26.2
B.27
C.27.6
D.28.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓W: ,過原點(diǎn)O作直線l1交橢圓W于A,B兩點(diǎn),P為橢圓上異于A,B的動(dòng)點(diǎn),連接PA,PB,設(shè)直線PA,PB的斜率分別為k1 , k2(k1 , k2≠0),過O作直線PA,PB的平行線l2 , l3 , 分別交橢圓W于C,D和E,F(xiàn).
(1)若A,B分別為橢圓W的左、右頂點(diǎn),是否存在點(diǎn)P,使∠APB=90°?說明理由.
(2)求k1k2的值;
(3)求|CD|2+|EF|2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直平行六面體ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.
(1)求證:OC1∥平面AB1D1
(2)求證:平面AB1D1⊥平面ACC1A1
(3)求三棱錐A1﹣AB1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零點(diǎn),求a的取值范圍;
(3)若對任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.
(1)求圖中a的值,并估計(jì)日需求量的眾數(shù);
(2)某日,經(jīng)銷商購進(jìn)130件該種產(chǎn)品,根據(jù)近期市場行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤為S元.
(ⅰ)將S表示為x的函數(shù);
(ⅱ)根據(jù)直方圖估計(jì)當(dāng)天純利潤S不少于3400元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓M的方程為x2+y2﹣8x﹣2y+16=0,若直線kx﹣y+3=0上至少存在一點(diǎn),使得以該點(diǎn)為圓心,半徑為1的圓與圓M有公共點(diǎn),則k的取值范圍是( )
A.(﹣∞, ]
B.[0,+∞)
C.[﹣ ,0]
D.(﹣∞, ]∪[0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和 ,其中n∈N* . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)若對于任意正整數(shù)n,都有 ,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com