【題目】已知橢圓W: ,過(guò)原點(diǎn)O作直線l1交橢圓W于A,B兩點(diǎn),P為橢圓上異于A,B的動(dòng)點(diǎn),連接PA,PB,設(shè)直線PA,PB的斜率分別為k1 , k2(k1 , k2≠0),過(guò)O作直線PA,PB的平行線l2 , l3 , 分別交橢圓W于C,D和E,F(xiàn).
(1)若A,B分別為橢圓W的左、右頂點(diǎn),是否存在點(diǎn)P,使∠APB=90°?說(shuō)明理由.
(2)求k1k2的值;
(3)求|CD|2+|EF|2的值.

【答案】
(1)解:不存在點(diǎn)P,使∠APB=90°.

說(shuō)明如下:設(shè)P(xP,yP).

依題意,此時(shí)A(﹣2,0),B(2,0),

,

若∠APB=90°,則需使 ,即

又點(diǎn)P在橢圓W上,所以 ,

代入(1)式中解得,xP=±2,且yP=0.

顯然與P為橢圓上異于A,B的點(diǎn)矛盾,所以不存在;


(2)解:設(shè)P(xP,yP),A(xA,yA),依題意直線l1過(guò)原點(diǎn),則B(﹣xA,﹣yA).

由于P為橢圓上異于A,B的點(diǎn),

則直線PA的斜率 ,直線PB的斜率

橢圓W的方程化為x2+4y2=4,由于點(diǎn)P和點(diǎn)A都為橢圓W上的點(diǎn),

,兩式相減得

因?yàn)辄c(diǎn)P和點(diǎn)A不重合,所以 ,

;


(3)解:

方法一:由于l2,l3分別平行于直線PA,PB,

則直線l2的斜率kCD=k1,直線l3的斜率kEF=k2

設(shè)直線l2的方程為y=k1x,代入到橢圓方程中,

,解得

設(shè)C(xC,yC),由直線l2過(guò)原點(diǎn),則D(﹣xC,﹣yC).

=

由于yC=k1xC,所以|CD|2= ,即|CD|2=

直線l3的方程為y=k2x,代入到橢圓方程中,

,解得

同理可得

則|CD|2+|EF|2=

由(Ⅱ)問(wèn) ,且k1≠0,則

即|CD|2+|EF|2=16

化簡(jiǎn)得|CD|2+|EF|2=16

即|CD|2+|EF|2=20.

方法二:設(shè)C(xC,yC),E(xE,yE),

由直線l2,l3都過(guò)原點(diǎn),則D(﹣xC,﹣yC),F(xiàn)(﹣xE,﹣yE).

由于l2,l3分別平行于直線PA,PB,

則直線l2的斜率kCD=k1,直線l3的斜率kEF=k2,

由(2)得 ,可得

由于kCD=k1≠0,則

由于點(diǎn)C不可能在x軸上,即yC≠0,所以 ,

過(guò)原點(diǎn)的直線l3的方程為 x,代入橢圓W的方程中,

,化簡(jiǎn)得

由于點(diǎn)C(xC,yC)在橢圓W上,所以

所以 ,不妨設(shè)xE=2yC,代入到直線 中,

.即 ,則

|CD|2+|EF|2=

=

=

,所以|CD|2+|EF|2=20.


【解析】(1)不存在點(diǎn)P,使∠APB=90°.理由如下:設(shè)P(xP , yP),運(yùn)用向量垂直的條件和數(shù)量積的坐標(biāo)表示,結(jié)合橢圓方程,即可判斷;(2)設(shè)P(xP , yP),A(xA , yA),運(yùn)用直線的斜率公式和點(diǎn)差法,化簡(jiǎn)整理可得所求值;(3)方法一:由于l2 , l3分別平行于直線PA,PB,求得直線方程,聯(lián)立橢圓方程,求得弦長(zhǎng),化簡(jiǎn)整理,即可得到所求值;
方法二、設(shè)C(xC , yC),E(xE , yE),由直線l2 , l3都過(guò)原點(diǎn),則D(﹣xC , ﹣yC),F(xiàn)(﹣xE , ﹣yE).由于l2 , l3分別平行于直線PA,PB,由平行的條件,求得直線方程,代入橢圓方程,化簡(jiǎn)整理,即可得到所求值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的離心率 ,且過(guò)點(diǎn)Q
(1)求橢圓C的方程.
(2)橢圓C長(zhǎng)軸兩端點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的動(dòng)點(diǎn),定直線x=4與直線PA,PB分別交于M,N兩點(diǎn),直線PA,PB的斜率分別為k1 , k2①證明 ;
②若E(7,0),過(guò)E,M,N三點(diǎn)的圓是否過(guò)x軸上不同于點(diǎn)E的定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
(Ⅰ)求證:PD⊥平面COD;
(Ⅱ)求二面角B﹣DC﹣O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論: ①函數(shù) 的值域是(0,+∞);
②直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過(guò)點(diǎn)A(1,2)且在坐標(biāo)軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,N為CD1中點(diǎn),M為線段BC1上的動(dòng)點(diǎn),(M不與B,C1重合)有四個(gè)命題:
①CD1⊥平面BMN;
②MN∥平面AB1D1;
③平面AA1CC1⊥平面BMN;
④三棱錐D﹣MNC的體積有最大值.
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x∈N, ∈N},則集合A用列舉法表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的頂點(diǎn)A(1,3),AB邊上的中線CM所在直線方程為2x﹣3y+2=0,AC邊上的高BH所在直線方程為2x+3y﹣9=0.求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2xsinθ﹣1,x∈[﹣ , ].
(1)當(dāng) 時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在x∈[﹣ , ]上是單調(diào)增函數(shù),且θ∈[0,2π],求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a3=12,a11=﹣5,且任意連續(xù)三項(xiàng)的和均為11,則a2017=;設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,則使得Sn≤100成立的最大整數(shù)n=

查看答案和解析>>

同步練習(xí)冊(cè)答案