【題目】已知函數f(x)=ax2+(2a+1)x+b,其中a,b∈R. (Ⅰ)當a=1,b=﹣4時,求函數f(x)的零點;
(Ⅱ)如果函數f(x)的圖象在直線y=x+2的上方,證明:b>2;
(Ⅲ)當b=2時,解關于x的不等式f(x)<0.
【答案】解:(Ⅰ)由f(x)=x2+3x﹣4=0,解得x=﹣4,或x=1.
所以函數f(x)有零點﹣4和1.
(Ⅱ)證明:(方法1)因為f(x)的圖象在直線y=x+2的上方,
所以ax2+(2a+1)x+b>x+2對x∈R恒成立.
即ax2+2ax+b﹣2>0對x∈R恒成立.
所以當x=0時上式也成立,代入得b>2.
(方法2)因為f(x)的圖象在直線y=x+2的上方,
所以ax2+(2a+1)x+b>x+2對x∈R恒成立.
即ax2+2ax+b﹣2>0對x∈R恒成立.
當a=0時,顯然b>2.
當a≠0時,
由題意,得a>0,且△=(2a)2﹣4a(b﹣2)<0,
則4a(b﹣2)>4a2>0,
所以4a(b﹣2)>0,即b>2.
綜上,b>2.
(Ⅲ)由題意,得不等式ax2+(2a+1)x+2<0,即(ax+1)(x+2)<0.
當a=0時,不等式化簡為x+2<0,解得x<﹣2;
當a≠0時,解方程(ax+1)(x+2)=0,得根x1=﹣2, .
所以,當a<0時,不等式的解為:x<﹣2,或 ;
當 時,不等式的解為: ;
當 時,不等式的解集為;
當 時,不等式的解為: .
綜上,當a<0時,不等式的解集為{x|x<﹣2,或 ;
當a=0時,不等式的解集為{x|x<﹣2};
當 時,不等式的解集為 ;
當 時,不等式的解集為;
當 時,不等式的解集為
【解析】(Ⅰ)解方程x2+3x﹣4=0,即可得到所求零點;(Ⅱ)(方法1)由題意可得ax2+(2a+1)x+b>x+2對x∈R恒成立.考慮x=0,可得結論;
(方法2)由題意可得ax2+2ax+b﹣2>0對x∈R恒成立.討論當a=0時,當a≠0時,得a>0,且△=(2a)2﹣4a(b﹣2)<0,即可得證;(Ⅲ)由題意可得(ax+1)(x+2)<0,對a討論,當a<0,a=0,當 時,當 時,當 時,運用二次不等式的解法,即可得到所求解集.
【考點精析】關于本題考查的二次函數的性質,需要了解增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】在直平行六面體ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.
(1)求證:OC1∥平面AB1D1
(2)求證:平面AB1D1⊥平面ACC1A1
(3)求三棱錐A1﹣AB1D1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C過坐標原點O,且與x軸、y軸分別交于點A、B,圓心坐標為(t,t)(t>0).
(1)若△AOB的面積為2,求圓C的方程;
(2)直線2x+y﹣6=0與圓C交于點D、E,是否存在t使得|OD|=|OE|?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取某班6名學生,測量他們的身高(單位:cm),獲得身高數據依次為:162,168,170,171,179,182,那么此班學生平均身高大約為cm;樣本數據的方差為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和 ,其中n∈N* . (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設 ,求數列{bn}的前n項和Tn;
(Ⅲ)若對于任意正整數n,都有 ,求實數λ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的頂點B(-1,-3),邊AB上的高CE所在直線的方程為 ,BC邊上中線AD所在的直線方程為 .
(1)求直線AB的方程;
(2)求點C的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知雙曲線 (a>0,b>0)的左、右焦點分別為F1、F2 , |F1F2|=8,P是雙曲線右支上的一點,直線F2P與y軸交于點A,△APF1的內切圓在邊PF1上的切點為Q,若|PQ|=2,則該雙曲線的離心率為( )
A.
B.
C.2
D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com