【題目】某公司2005~2010年的年利潤x(單位:百萬元)與年廣告支出y(單位:百萬元)的統(tǒng)計資料如表所示:

年份

2005

2006

2007

2008

2009

2010

利潤x

12.2

14.6

16

18

20.4

22.3

支出y

0.62

0.74

0.81

0.89

1

1.11

根據(jù)統(tǒng)計資料,則(
A.利潤中位數(shù)是16,x與y有正線性相關(guān)關(guān)系
B.利潤中位數(shù)是18,x與y有負線性相關(guān)關(guān)系
C.利潤中位數(shù)是17,x與y有正線性相關(guān)關(guān)系
D.利潤中位數(shù)是17,x與y有負線性相關(guān)關(guān)系

【答案】C
【解析】解:由題意,利潤中位數(shù)是 =17,而且隨著利潤的增加,支出也在增加,故x與y有正線性相關(guān)關(guān)系
故選C.
求出利潤中位數(shù),而且隨著利潤的增加,支出也在增加,故可得結(jié)論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若某校高一年級8個班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是(

A.91.5和91.5
B.91.5和92
C.91和91.5
D.92和92

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】福州市某大型家電商場為了使每月銷售空調(diào)和冰箱獲得的總利潤達到最大,對某月即將出售的空調(diào)和冰箱進行了相關(guān)調(diào)查,得出下表:

資金

每臺空調(diào)或冰箱所需資金(百元)

月資金最多供應(yīng)量(百元)

空調(diào)

冰箱

進貨成本

30

20

300

工人工資

5

10

110

每臺利潤

6

8

問:該商場如果根據(jù)調(diào)查得來的數(shù)據(jù),應(yīng)該怎樣確定空調(diào)和冰箱的月供應(yīng)量,才能使商場獲得的總利潤最大?總利潤的最大值為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義一種運算ab= ,令f(x)=(3x2+6x)(2x+3﹣x2),則函數(shù)f(x)的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017廣東佛山二!如圖,矩形中, , , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面坐標系內(nèi),O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體,求樣本容量n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017江西南昌十所重點二!選修4—4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;

(Ⅲ)設(shè)是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有極值,且導函數(shù)的極值點是的零點。(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

證明:b>3a;

, 這兩個函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

同步練習冊答案