【題目】現(xiàn)有正整數(shù)構成的數(shù)表如下:
第一行:1
第二行:1 2
第三行:1 1 2 3
第四行:1 1 2 1 1 2 3 4
第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5
…… …… ……
第行:先抄寫第1行,接著按原序抄寫第2行,然后按原序抄寫第3行,...,直至按原序抄寫第行,最后添上數(shù).(如第四行,先抄寫第一行的數(shù)1,接著按原序抄寫第二行的數(shù)1,2,接著按原序抄寫第三行的數(shù)1,1,2,3,最后添上數(shù)4).
將按照上述方式寫下的第個數(shù)記作(如)
(1)用表示數(shù)表第行的數(shù)的個數(shù),求數(shù)列的前項和;
(2)第8行中的數(shù)是否超過73個?若是,用表示第8行中的第73個數(shù),試求和的值;若不是,請說明理由;
(3)令,求的值.
【答案】(1)(2)(3)
【解析】試題分析:(1)根據(jù)題意可以寫出當時, ,
,于是,即,所以,故;(2)根據(jù),第8行中共有個數(shù),所以,第8行中的數(shù)超過73個,所以,從而, ,由, ,所以,按上述順序依次寫下的第73個數(shù)應是第7行的第個數(shù),同上過程知,所以, .(3)由于數(shù)表的前行共有個數(shù),于是,先計算.在前個數(shù)中,共有1個,2個, 個,……, 個,……, 個1,因此 ,則 ,兩式相減,得 .
試題解析:(1)當時,
,
,
于是,即,又, ,
所以,
故.
(2)由得第8行中共有個數(shù),
所以,第8行中的數(shù)超過73個,
,
從而, ,
由, ,
所以,按上述順序依次寫下的第73個數(shù)應是第7行的第個數(shù),同上過程知,
所以, .
(3)由于數(shù)表的前行共有個數(shù),于是,先計算.
在前個數(shù)中,共有1個,2個, 個,……, 個,……, 個1,
因此 ,
則 ,
兩式相減,得 .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分圖象,其圖象與y軸交于點(0,)
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若 , 求-的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= , g(x)是二次函數(shù),若f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( 。
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=kx2+2x(k為實常數(shù))為奇函數(shù),函數(shù)g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)當a=時,g(x)≤t2﹣2mt+1對所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:橢圓與雙曲線有相同的焦點、,它們在軸右側有兩個交點、,滿足.將直線左側的橢圓部分(含, 兩點)記為曲線,直線右側的雙曲線部分(不含, 兩點)記為曲線.以為端點作一條射線,分別交于點,交于點(點在第一象限),設此時.
(1)求的方程;
(2)證明: ,并探索直線與斜率之間的關系;
(3)設直線交于點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com