【題目】在平面直角坐標系O中,直線與拋物線=2相交于A、B兩點.
(1)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
【答案】(1)見解析;
(2)見解析.
【解析】
(1)直線方程與拋物線方程聯(lián)立,消去后利用韋達定理判斷的值是否為3,從而確定此命題是否為真命題;
(2)根據(jù)四種命題之間的關系寫出該命題的逆命題,然后再利用直線與拋物線的位置關系知識來判斷其真假.
(1)證明:設過點的直線交拋物線于點,
當直線的斜率不存在時,直線的方程為,
此時,直線與拋物線相交于,
所以,
當直線的斜率存在時,設直線的方程為,其中,
,得,
則,
又因為,
所以,
綜上所述,命題“如果直線過點T(3,0),那么=3”是真命題;
(2)逆命題是:“設直線與拋物線=2相交于A、B兩點,如果=3,那么該直線過點”,該命題是假命題,
例如:取拋物線上的點,此時=3,直線AB的方程為,而T(3,0)不在直線AB上.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為,設地鐵在AB部分的總長度為.
按下列要求建立關系式:
設,將y表示成的函數(shù);
設,用m,n表示y.
把A,B兩站分別設在公路上離中心O多遠處,才能使AB最短?并求出最短距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項和,a4=2,S6=18.
(1)求an;
(2)設Tn=|a1|+|a2|+…+|an|,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為.
求曲線C的直角坐標方程與直線l的極坐標方程;
Ⅱ若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組在科學館的帕斯卡三角儀器前進行探究實驗.如圖所示,每次使一個實心小球從帕斯卡三角儀器的頂部入口落下,當它在依次碰到每層的菱形擋板時,會等可能地向左或者向右落下,在最底層的7個出口處各放置一個容器接住小球,該小組連續(xù)進行200次試驗,并統(tǒng)計容器中的小球個數(shù)得到柱狀圖:
(Ⅰ)用該實驗來估測小球落入4號容器的概率,若估測結果的誤差小于,則稱該實驗是成功的.試問:該興趣小組進行的實驗是否成功?(誤差)
(Ⅱ)再取3個小球進行試驗,設其中落入4號容器的小球個數(shù)為,求的分布列與數(shù)學期望.(計算時采用概率的理論值)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)及如下的4個命題:
關于x的方程有個不同的零點;
對于實數(shù),不等式恒成立;
在上,方程有5個零點;
時,函數(shù)的圖象與x軸圖成的形的面積是4.
則以上命題正確的為______把正確命題前的序號填在橫線上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,GH是東西方向的公路北側的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設,并在公路北側建造邊長為的正方形無頂中轉站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關于的函數(shù)解析式,并求出定義域;
(2)如果中轉站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設中轉站圍墻和兩條道路總造價M最低.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com