【題目】某興趣小組在科學(xué)館的帕斯卡三角儀器前進(jìn)行探究實(shí)驗(yàn).如圖所示,每次使一個實(shí)心小球從帕斯卡三角儀器的頂部入口落下,當(dāng)它在依次碰到每層的菱形擋板時,會等可能地向左或者向右落下,在最底層的7個出口處各放置一個容器接住小球,該小組連續(xù)進(jìn)行200次試驗(yàn),并統(tǒng)計容器中的小球個數(shù)得到柱狀圖:

(Ⅰ)用該實(shí)驗(yàn)來估測小球落入4號容器的概率,若估測結(jié)果的誤差小于,則稱該實(shí)驗(yàn)是成功的.試問:該興趣小組進(jìn)行的實(shí)驗(yàn)是否成功?(誤差

(Ⅱ)再取3個小球進(jìn)行試驗(yàn),設(shè)其中落入4號容器的小球個數(shù)為,求的分布列與數(shù)學(xué)期望.(計算時采用概率的理論值)

【答案】(Ⅰ)是成功的;(Ⅱ)詳見解析.

【解析】

(Ⅰ)求出小球落入4號容器的概率的理論值,問題得解.

(Ⅱ)直接利用二項分布求解。

解:(Ⅰ)小球落入4號容器的概率的理論值為.

小球落入4號容器的概率的估測值為.

誤差為,故該實(shí)驗(yàn)是成功的.

(Ⅱ)由(Ⅰ)可得,每個小球落入4號容器的概率為,未落入4號容器的概率為.,

,

,

.

的分布列為

由于,所以.

練習(xí)冊系列答案

0

1

2

3

年級 高中課程 年級 初中課程
高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動直線l與橢圓C交于,兩個不同的點(diǎn),O為坐標(biāo)原點(diǎn).

若直線l過點(diǎn),且原點(diǎn)到直線l的距離為,求直線l的方程;

的面積,求證:均為定值;

橢圓C上是否存在三點(diǎn)D、E、G,使得?若存在,判斷的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場營銷人員進(jìn)行某商品市場營銷調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品當(dāng)天的銷量就會發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計得到以下表:

反饋點(diǎn)數(shù)

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐芬惶熹N量(百件)與該天返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測若返回6個點(diǎn)時該商品當(dāng)天銷量;

(2)若節(jié)日期間營銷部對商品進(jìn)行新一輪調(diào)整.已知某地擬購買該商品的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點(diǎn)數(shù)預(yù)期值區(qū)間(百分比)

頻數(shù)

20

60

60

30

20

10

將對返還點(diǎn)數(shù)的心理預(yù)期值在的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費(fèi)者的概率.(參考公式及數(shù)據(jù):①回歸方程,其中,;②.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,BC所對的邊分別為a,b,c,滿足(2bc)cosAacosC

1)求角A;

2)若,b+c5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系O中,直線與拋物線2相交于AB兩點(diǎn).

1)求證:命題“如果直線過點(diǎn)T30),那么3”是真命題;

2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程,并說明它為何種曲線;

(Ⅱ)設(shè)點(diǎn)的坐標(biāo)為,直線交曲線,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有兩個極值點(diǎn),且,則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是空氣質(zhì)量的一個重要指標(biāo),我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標(biāo).如圖是某地日到日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是(

A.日到日,日均值逐漸降低

B.天的日均值的中位數(shù)是

C.天中日均值的平均數(shù)是

D.從這天的日均監(jiān)測數(shù)據(jù)中隨機(jī)抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過點(diǎn)的橢圓的離心率為,左頂點(diǎn)和上頂點(diǎn)分別為A,B

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若P為線段OD延長線上一點(diǎn),直線PA交橢圓于另一點(diǎn)E,直線PB交橢圓于另一點(diǎn)Q

①求直線PAPB的斜率之積;

②判斷直線ABEQ是否平行?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案