【題目】已知函數(shù)滿(mǎn)足,且上無(wú)最小值,則______,函數(shù)的單調(diào)減區(qū)間為______.

【答案】

【解析】

由題意可得 x2x6為函數(shù)fx)的圖象上2條相鄰的對(duì)稱(chēng)軸,f2)為最小值,f6)為最大值,由此求出函數(shù)的解析式,可得它的減區(qū)間.

∵函數(shù)fx)=sinωx+φ)(ω0)滿(mǎn)足f1)=f3)=f9)=m,上無(wú)最小值,x2x6為函數(shù)fx)的圖象上2條相鄰的對(duì)稱(chēng)軸,f2)為最小值,f6)為最大值.

故函數(shù)的最小正周期為2×(62)=8,∴ω

∴取2φ,∴φ=﹣π,fx)=sinxπ)=﹣sinx

2kπx2kπ,求得8k2x8k+2

可得函數(shù)fx)的單調(diào)減區(qū)間為[8k2,8k+2]kZ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃河被稱(chēng)為我國(guó)的母親河,它的得名據(jù)說(shuō)來(lái)自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來(lái)自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫(kù)附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線(xiàn),設(shè)黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設(shè)從交匯處開(kāi)始沿岸設(shè)有若干個(gè)觀測(cè)點(diǎn),兩股河水在流經(jīng)相鄰的觀測(cè)點(diǎn)的過(guò)程中,其混合效果相當(dāng)于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.

1)求經(jīng)過(guò)第二個(gè)觀測(cè)點(diǎn)時(shí),兩股河水的含沙量;

2)從第幾個(gè)觀測(cè)點(diǎn)開(kāi)始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCDA1B1C1D1中,EF分別為AB,A1C的中點(diǎn),且AA1AD

1)求直線(xiàn)EF與平面ABCD所成角的大;

2)若EFAB,求二面角BA1CD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)m2xy30與直線(xiàn)nx+y30的交點(diǎn)為P,若直線(xiàn)l過(guò)點(diǎn)P,且點(diǎn)A13)和B3,2)到l的距離相等,求l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形中, ,現(xiàn)將沿折起,使折到的位置且在面的射影恰好在線(xiàn)段上.

(Ⅰ)證明:

(Ⅱ)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的極小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在交通工程學(xué)中,常作如下定義:交通流量(輛/小時(shí)):?jiǎn)挝粫r(shí)間內(nèi)通過(guò)道路上某一橫斷面的車(chē)輛數(shù);車(chē)流速度(千米/小時(shí)):?jiǎn)挝粫r(shí)間內(nèi)車(chē)流平均行駛過(guò)的距離;車(chē)流密度(輛/千米):?jiǎn)挝婚L(zhǎng)度道路上某一瞬間所存在的車(chē)輛數(shù). 一般的,滿(mǎn)足一個(gè)線(xiàn)性關(guān)系,即(其中是正數(shù)),則以下說(shuō)法正確的是

A. 隨著車(chē)流密度增大,車(chē)流速度增大

B. 隨著車(chē)流密度增大,交通流量增大

C. 隨著車(chē)流密度增大,交通流量先減小,后增大

D. 隨著車(chē)流密度增大,交通流量先增大,后減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)xy都小于1的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)其中xy能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)的值.如果統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a為常數(shù).

當(dāng)時(shí),設(shè)函數(shù),判斷函數(shù)上是增函數(shù)還是減函數(shù),并說(shuō)明理由;

設(shè)函數(shù),若函數(shù)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案