【題目】已知橢圓,為焦點,且離心率

(1)求橢圓的方程;

(2)過點斜率為的直線與橢圓有兩個不同交點、,求的范圍;

(3)設(shè)橢圓軸正半軸、軸正半軸的交點分別為、,是否存在直線,滿足(2)中的條件且使得向量垂直?如果存在,寫出的方程;如果不存在,請說明理由。

【答案】(1);(2);(3)答案見解析.

【解析】

(1)由題意可得c,根據(jù)離心率可求出,即可寫出方程(2)寫出直線方程,聯(lián)立方程組消元,通過判別式大于0求得k的取值范圍(3)利用向量的坐標(biāo),可計算的數(shù)量積為0時,k不滿足,故不存在.

(1)設(shè)橢圓的長半軸長、短半軸長、半焦距長分別為、、

由題設(shè)知:

,得

∴橢圓的方程為

(2)過點斜率為的直線

與橢圓方程聯(lián)立消…“*”

與橢圓有兩個不同交點知

的范圍是

(3)設(shè)、,則、“*”的二根

,則

由題設(shè)知、

,

∴不存在滿足題設(shè)條件的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(x1,y1),B(x2,y2),M(1,0),=(3λ,4λ)(λ≠0),=-4,若拋物線y2=ax經(jīng)過AB兩點,a的值為(  )

A. 2 B. -2

C. -4 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列{an}的首項a1=1,sn是數(shù)列{an}的前n項和,且滿足:
anSn+1﹣an+1Sn+an﹣an+1=λanan+1(λ≠0,n∈N
(1)若a1 , a2 , a3成等比數(shù)列,求實數(shù)λ的值;
(2)若λ= ,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,M-N=992.

(1)判斷該展開式中有無x2項?若有,求出它的系數(shù);若沒有,說明理由;

(2)求此展開式中有理項的項數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}各項均為正數(shù),其前n項和為Sn,且滿足4Sn=(an+1)2.

(1){an}的通項公式;

(2)設(shè),數(shù)列{bn}的前n項和為Tn,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)M、N、T是圓C:(x﹣1)2+y2=4上不同三點,若存在正實數(shù)a,b,使 =a +b ,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+lnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)求證:當(dāng)x>1時, x2+lnx<x3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

同步練習(xí)冊答案