【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意的, 恒成立,求的取值范圍.
【答案】(Ⅰ)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和. (Ⅱ)
【解析】試題分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)對(duì)任意的, 恒成立,等價(jià)于恒成立. 令,所以,令,可證得在上單調(diào)遞增. 所以,即可求出的取值范圍.
試題解析:(Ⅰ)因?yàn)?/span>, 所以,
所以
令,即,所以
令,即,所以
所以在上單調(diào)遞增,在和上單調(diào)遞減.
所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.
(Ⅱ)因?yàn)?/span>,所以
因?yàn)?/span>
所以對(duì)任意的, 恒成立,即恒成立.
等價(jià)于恒成立.
令,所以
令,所以
所以當(dāng)時(shí),
所以在上單調(diào)遞增. 所以
所以當(dāng)時(shí),
所以在上單調(diào)遞增. 所以
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的值;
(2)如果當(dāng),且時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù))
(1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;
(2)當(dāng)()時(shí)在曲線上對(duì)應(yīng)的點(diǎn)為,若的面積為,求點(diǎn)的極坐標(biāo),并判斷是否在曲線上(其中點(diǎn)為半圓的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)是否存在實(shí)數(shù),使對(duì)任意恒成立?若存在,試求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60 m處,點(diǎn)C位于點(diǎn)O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長(zhǎng);
(2)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率,且過拋物線的焦點(diǎn).
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交拋物線于兩不同點(diǎn),交軸于點(diǎn),已知, ,求證: 為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com