【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù))

(1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;

(2)當(dāng))時(shí)在曲線上對(duì)應(yīng)的點(diǎn)為,若的面積為,求點(diǎn)的極坐標(biāo),并判斷是否在曲線上(其中點(diǎn)為半圓的圓心)

【答案】(1)曲線的普通方程為,曲線的極坐標(biāo)方程為,( );(2)見(jiàn)解析.

【解析】試題分析:1曲線的極坐標(biāo)方程為兩邊同乘以,利用 即可得曲線的直角坐標(biāo)方程,利用代入法將曲線的參數(shù)方程消去參數(shù)可得普通方程,再化成極坐標(biāo)方程可即可;2設(shè)的極坐標(biāo)為利用的面積為可求出點(diǎn)的極坐標(biāo),代入曲線的極坐標(biāo)方程檢驗(yàn)是否成立即可.

試題解析(1)曲線的普通方程為,

曲線的極坐標(biāo)方程為: ,( ),

(2)設(shè)的極坐標(biāo)為,(

,

所以點(diǎn)的極坐標(biāo)為,符合方程,

所以點(diǎn)在曲線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù),求

最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點(diǎn)處的切線的斜率;

(Ⅱ)判斷方程的導(dǎo)數(shù)在區(qū)間內(nèi)的根的個(gè)數(shù),說(shuō)明理由;

(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調(diào)增函數(shù)

①求最大整數(shù)值;

②證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, 分別為、的中點(diǎn), .

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;

(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

對(duì)任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知兩個(gè)正方形ABCDDCEF不在同一平面內(nèi),MN分別為AB,DF的中點(diǎn).

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點(diǎn),FB1C1的中點(diǎn).

(1)求證:A1F∥平面ECC1;

(2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案