【題目】設(shè)函數(shù)

1討論的單調(diào)性;

(2)當(dāng)時(shí), ,求的取值范圍.

【答案】1見解析2

【解析】試題分析:(1根據(jù),對(duì)字母a分類討論,求出函數(shù)的單調(diào)區(qū)間;2當(dāng)時(shí),分離參數(shù),轉(zhuǎn)化為分別求的最小值,及的最大值,利用導(dǎo)數(shù),求其最大值即可.

試題解析:1

,則,在單調(diào)遞增.若,當(dāng)時(shí), ;當(dāng)時(shí), .于是單調(diào)遞減,在單調(diào)遞增.

(2)方法1當(dāng)時(shí), ,

因?yàn)楹瘮?shù)單調(diào)遞增,所以

設(shè), ,當(dāng)時(shí), , 單調(diào)遞增;當(dāng)時(shí), 單調(diào)遞減.故 ,所以綜上, 的取值范圍為

(2)方法2設(shè),則當(dāng)時(shí),

,得

,當(dāng)時(shí), , 單調(diào)遞增,所以

,當(dāng)時(shí), , 單調(diào)遞增,故.因?yàn)?/span>,所以

,由 ,知存在唯一零點(diǎn),設(shè)為,則

當(dāng)時(shí), , 單調(diào)遞減;當(dāng)時(shí), , 單調(diào)遞增;故有最小值,

由(1)得單調(diào)遞減,所以

綜上, 的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當(dāng)p=3時(shí),若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 分別為、的中點(diǎn), .

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

對(duì)任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐,平面平面, , , , 的中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知兩個(gè)正方形ABCDDCEF不在同一平面內(nèi),MN分別為AB,DF的中點(diǎn).

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對(duì)任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;

(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請(qǐng)將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)求的單調(diào)區(qū)間.

)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)零點(diǎn).

)設(shè),其中恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市高中全體學(xué)生參加某項(xiàng)測(cè)評(píng),按得分評(píng)為兩類(評(píng)定標(biāo)準(zhǔn)見表1).根據(jù)男女學(xué)生比例,使用分層抽樣的方法隨機(jī)抽取了10000名學(xué)生的得分?jǐn)?shù)據(jù),其中等級(jí)為的學(xué)生中有40%是男生,等級(jí)為的學(xué)生中有一半是女生.等級(jí)為的學(xué)生統(tǒng)稱為類學(xué)生,等級(jí)為的學(xué)生統(tǒng)稱為類學(xué)生.整理這10000名學(xué)生的得分?jǐn)?shù)據(jù),得到如圖2所示的頻率分布直方圖,

類別

得分(

表1

(I)已知該市高中學(xué)生共20萬人,試估計(jì)在該項(xiàng)測(cè)評(píng)中被評(píng)為類學(xué)生的人數(shù);

(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機(jī)選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學(xué)生”的概率;

(Ⅲ)在這10000名學(xué)生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為, 類男生占男生總數(shù)的比例為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案