【題目】運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛千米,按交通法規(guī)則限制(單位:千米/小時(shí)),假設(shè)汽油的價(jià)格是每升元,而汽車每小時(shí)耗油升,司機(jī)工資是每小時(shí)元.
(1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.(精確到)
【答案】(1)();(2)當(dāng)時(shí),這次行車的總費(fèi)用最低,最低費(fèi)用為元.
【解析】
(1)由題意先設(shè)行車所用時(shí)間,利用速度、路程、時(shí)間的關(guān)系列出與的關(guān)系式,再求得這次行車總費(fèi)用關(guān)于的表達(dá)式即可;
(2)欲求為何值時(shí),這次行車的總費(fèi)用最低,利用導(dǎo)數(shù)知識(shí)研究(1)中函數(shù)的單調(diào)性從而求得其最小值即可.
(1)由題得:行車所用時(shí)間為 (小時(shí)),
則,,
所以,這次行車總費(fèi)用關(guān)于的表達(dá)式是().
(2)時(shí),,
所以()為增函數(shù),
所以,當(dāng)時(shí),這次行車的總費(fèi)用最低,最低費(fèi)用為元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)對任意,將數(shù)列中落入?yún)^(qū)間內(nèi)的項(xiàng)的個(gè)數(shù)記為,記數(shù)列的前項(xiàng)和為,求使得的最小整數(shù);
(3)若 ,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cos ωx·sin+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(1)求a和ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)專業(yè)有數(shù)學(xué)分析、解析幾何、高等代數(shù)三個(gè)科目的選修課,甲、乙兩位同學(xué)各隨機(jī)選擇兩科,則數(shù)學(xué)分析至少被一位同學(xué)選中的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲水機(jī)廠生產(chǎn)的A,B,C,D四類產(chǎn)品,每類產(chǎn)品均有經(jīng)濟(jì)型和豪華型兩種型號(hào),某一月的產(chǎn)量如下表(單位:臺(tái))
A | B | C | D | |
經(jīng)濟(jì)型 | 5000 | 2000 | 4500 | 3500 |
豪華型 | 2000 | 3000 | 1500 | 500 |
(1)在這一月生產(chǎn)的飲水機(jī)中,用分層抽樣的方法抽取n臺(tái),其中有A類產(chǎn)品49臺(tái),求n的值;
(2)用隨機(jī)抽樣的方法,從C類經(jīng)濟(jì)型飲水機(jī)中抽取10臺(tái)進(jìn)行質(zhì)量檢測,經(jīng)檢測它們的得分如下:7.9,9.4,7.8,9.4,8.6,9.2,10,9.4,7.9,9.4,從D類經(jīng)濟(jì)型飲水機(jī)中抽取10臺(tái)進(jìn)行質(zhì)量檢測,經(jīng)檢測它們的得分如下:8.9,9.3,8.8,9.2,8.6,9.2,9.0,9.0,8.4,8.6,根據(jù)分析,你會(huì)選擇購買C類經(jīng)濟(jì)型飲水機(jī)與D類經(jīng)濟(jì)型飲水機(jī)中哪類產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,且為常數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若在區(qū)間內(nèi),存在且時(shí),使不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com