【題目】如表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)已知該廠技術改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術改造前降低多少噸標準煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式, )
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點列{An}、{Bn}分別在某銳角的兩邊上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,一動直線l過與圓相交于.兩點,是中點,l與直線m:相交于.
(1)求證:當l與m垂直時,l必過圓心;
(2)當時,求直線l的方程;
(3)探索是否與直線l的傾斜角有關,若無關,請求出其值;若有關,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平面斜坐標系xOy中,∠xOy=60°,平面上任意一點P關于斜坐標系的斜坐標是這樣定義的:若=xe1+ye2(其中e1,e2分別為x軸、y軸同方向的單位向量),則點P的斜坐標為(x,y).
(1)若點P在斜坐標系xOy中的斜坐標為(2,-2),求點P到原點O的距離.
(2)求以原點O為圓心,1為半徑的圓在斜坐標系xOy中的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用,
據(jù)市場分析,每輛單車的營運累計利潤y(單位:元)與營運天數(shù)x滿足函數(shù)關系
式.
(1)要使營運累計利潤高于800元,求營運天數(shù)的取值范圍;
(2)每輛單車營運多少天時,才能使每天的平均營運利潤的值最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com