【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求 的最小值;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR||OS|是定值.

【答案】
(1)解:由題意可知:T(﹣2,0),∴a=2.又 ,a2=b2+c2,

聯(lián)立解得a=2,c= ,b=1.

∴橢圓C的方程為 =1


(2)解:設(shè)M(x0,y0),N(x0,﹣y0).

把點(diǎn)M的坐標(biāo)代入橢圓方程可得: =1﹣

= = = ,

∵﹣2<x0<2,

∴當(dāng)且僅當(dāng)x0=﹣ 時(shí), 取得最小值﹣


(3)證明:設(shè)P(x1,y1),

直線MP的方程為:y﹣y1= (x﹣x1),

令y=0,可得xR= ,

同理可得:xS= ,

∵點(diǎn)M,P都在橢圓上,

=4 =4 ,

∴:|OR||OS|=xRxS= = =4是定值


【解析】(1)由題意可知:T(﹣2,0),a=2.又 ,a2=b2+c2 , 聯(lián)立解出即可得出.(2)設(shè)M(x0 , y0),N(x0 , ﹣y0).把點(diǎn)M的坐標(biāo)代入橢圓方程可得: =1﹣ .利用數(shù)量積運(yùn)算性質(zhì)可得: = ,﹣2<x0<2,再利用二次函數(shù)的單調(diào)性即可得出.(3)設(shè)P(x1 , y1),直線MP的方程為:y﹣y1= (x﹣x1),令y=0,可得xR , 同理可得:xS , 利用點(diǎn)M,P都在橢圓上,及其|OR||OS|=xRxS即可證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時(shí),(1)k + ﹣3 垂直;
當(dāng)k=時(shí),(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為Tn , 問使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0(e是自然對(duì)數(shù)的底數(shù)),對(duì)任意的m∈[﹣2,4]恒成立,則整數(shù)k的最小值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數(shù)f(x)=lg(2x+a)的定義域?yàn)榧螩,滿足AC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 (n∈N*)的展開式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10:1.
(1)求在展開式中含x 的項(xiàng);
(2)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組檢測(cè)數(shù)據(jù),如下表所示:

已知變量具有線性負(fù)相關(guān)關(guān)系,且 ,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得其回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.

(1)試判斷誰的計(jì)算結(jié)果正確?并求出的值;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過1,則該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取2個(gè),求這兩個(gè)檢測(cè)數(shù)據(jù)均為“理想數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其定義如下表:則方程g(f(x))=x的解集為(

x

1

2

3

f(x)

2

3

1

x

1

2

3

g(x)

3

2

1


A.{1}
B.{2}
C.{3}
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案