【題目】如圖1所示,在直角梯形 中, , , , , , .將 沿 折起,使得點(diǎn) 在平面 的正投影 恰好落在 邊上,得到幾何體 ,如圖2所示.
(1)求證: ;
(2)求點(diǎn) 到平面 的距離.
【答案】
(1)解:據(jù)題意得: , ,因?yàn)? , , ,滿(mǎn)足 ,所以:
又 ,所以 ,得 ,又 , ,
(2)解:設(shè)點(diǎn) 到平面 的距離為 ,由(1)知: 的高,且 , ,
, ,
由 ,得 ,所以:
【解析】(1)利用線(xiàn)面垂直的性質(zhì)定理得到線(xiàn)線(xiàn)垂直,再由勾股定理計(jì)算出垂直關(guān)系,根據(jù)線(xiàn)面垂直的判定定理得到線(xiàn)面垂直,再由線(xiàn)面垂直的性質(zhì)定理得到線(xiàn)線(xiàn)垂直,從而得到線(xiàn)面垂直。(2)由(1)的結(jié)論得出D O 是 三 棱 錐 D A B C 的高,利用等面積法求出其值再由解三角形的知識(shí)求出BD以及 三角形ABD的值,結(jié)合等體積法求出點(diǎn) C 到平面 A B D 的距離。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合計(jì) | |
男大學(xué)生 | 610 | ||
女大學(xué)生 | 90 | ||
合計(jì) | 800 |
(1)根據(jù)題意完成表格;
(2)是否有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.
P(K2≥K0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
K0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(1,1)和B(2,-2),且圓心C在直線(xiàn)l:x-y+1=0上,求圓心為C的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 在 上單調(diào)遞增,
(1)若函數(shù) 有實(shí)數(shù)零點(diǎn),求滿(mǎn)足條件的實(shí)數(shù) 的集合 ;
(2)若對(duì)于任意的 時(shí),不等式 恒成立,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓 (a>b>0)與x軸,y軸的正半輛分別交于A,B兩點(diǎn),原點(diǎn)O到直線(xiàn)AB的距離為 ,該橢圓的離心率為 . (Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn) 的直線(xiàn)l與橢圓交于兩個(gè)不同的點(diǎn)M,N,求線(xiàn)段MN的垂直平分線(xiàn)在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 : ,直線(xiàn) : .
(1)設(shè)點(diǎn) 是直線(xiàn) 上的一動(dòng)點(diǎn),過(guò) 點(diǎn)作圓 的兩條切線(xiàn),切點(diǎn)分別為 ,求四邊形 的面積的最小值;
(2)過(guò) 作直線(xiàn) 的垂線(xiàn)交圓 于 點(diǎn), 為 關(guān)于 軸的對(duì)稱(chēng)點(diǎn),若 是圓 上異于 的兩個(gè)不同點(diǎn),且滿(mǎn)足: ,試證明直線(xiàn) 的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,直線(xiàn)y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|= |PQ|. (Ⅰ)求C的方程;
(Ⅱ)過(guò)F的直線(xiàn)l與C相交于A、B兩點(diǎn),若AB的垂直平分線(xiàn)l′與C相交于M、N兩點(diǎn),且A、M、B、N四點(diǎn)在同一圓上,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些缺損,按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示.
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè)) | 11 | 9 | 8 | 5 |
(1)作出散點(diǎn)圖;
(2)如果y與x線(xiàn)性相關(guān),求出回歸直線(xiàn)方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題: ①定義在R上的函數(shù)f(x)滿(mǎn)足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實(shí)數(shù)a,b,滿(mǎn)足a2+b2=0,則a,b都為0”時(shí),“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)單位長(zhǎng)度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號(hào)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com