【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

610

女大學(xué)生

90

合計(jì)

800


(1)根據(jù)題意完成表格;
(2)是否有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.

P(K2≥K0

0.25

0.15

0.10

0.05

0.025

K0

1.323

2.072

2.706

3.841

5.024

【答案】
(1)解:根據(jù)列聯(lián)表中數(shù)量關(guān)系,補(bǔ)全聯(lián)立表如下;

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

500

110

610

女大學(xué)生

300

90

390

合計(jì)

800

200

1000


(2)解:因?yàn)镵2的觀測(cè)值k= = ≈3.78<3.841,

∴沒有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)


【解析】(1)根據(jù)列聯(lián)表中數(shù)量關(guān)系,補(bǔ)全聯(lián)立表即可;(2)計(jì)算K2的觀測(cè)值k,對(duì)照臨界值即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,直線

(1)求證:對(duì)任意的 ,直線 與圓 恒有兩個(gè)交點(diǎn);
(2)求直線 被圓 截得的線段的最短長(zhǎng)度,及此時(shí)直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在這個(gè)正方體中,

平行;
是異面直線;
是異面直線;
是異面直線;
以上四個(gè)命題中,正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒中有標(biāo)號(hào)分別為0,1,2,3的球各一個(gè),這些球除標(biāo)號(hào)外均相同.從盒中依次摸取兩個(gè)球(每次一球,摸出后不放回),記為一次游戲.規(guī)定:摸出的兩個(gè)球上的標(biāo)號(hào)之和等于5為一等獎(jiǎng),等于4為二等獎(jiǎng),等于其它為三等獎(jiǎng).
(1)求完成一次游戲獲三等獎(jiǎng)的概率;
(2)記完成一次游戲獲獎(jiǎng)的等級(jí)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1 , l2分別是函數(shù)f(x)=sinx,x∈[0,π]圖象上點(diǎn)P1 , P2處的切線,l1 , l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是定義在 上的奇函數(shù),當(dāng) 時(shí), ,則不等式 的解集為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了穩(wěn)定市場(chǎng),確保農(nóng)民增收,某農(nóng)產(chǎn)品7個(gè)月份的每月市場(chǎng)收購(gòu)價(jià)格與其前三個(gè)月的市場(chǎng)收購(gòu)價(jià)格有關(guān),并使其與前三個(gè)月的市場(chǎng)收購(gòu)價(jià)格之差的平方和最小,下表列出的是該產(chǎn)品今年前6個(gè)月的市場(chǎng)收購(gòu)價(jià)格,則前7個(gè)月該產(chǎn)品的市場(chǎng)收購(gòu)價(jià)格的方差為( )

月份

1

2

3

4

5

6

價(jià)格(元/擔(dān))

68

78

67

71

72

70


A.
B.
C.11
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一次考試結(jié)果的頻數(shù)分布直方圖,根據(jù)該圖可估計(jì),這次考試的平均分?jǐn)?shù)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在直角梯形 中, , , , , , .將 沿 折起,使得點(diǎn) 在平面 的正投影 恰好落在 邊上,得到幾何體 ,如圖2所示.

(1)求證: ;
(2)求點(diǎn) 到平面 的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案