【題目】已知函數(shù),函數(shù)

)求函數(shù)的極值;

)當時,證明:對一切的,都有恒成立;

)當時,函數(shù),有最小值,記的最小值為,證明:

【答案】)極大值是,無極小值()詳見解析()詳見解析

【解析】

)求出函數(shù)的導數(shù),利用導數(shù)求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;

)問題可轉(zhuǎn)化為證明,令,通過求導判斷單調(diào)性可得到的最小值的最大值是,即可證明不等式成立;

)求出函數(shù)的導數(shù),結(jié)合的范圍,可判斷函數(shù)的單調(diào)性及最小值,從而可得到的表達式,然后通過構造函數(shù)判斷的單調(diào)性,即可證明結(jié)論。

解:(,令,則,

,解得:

,解得:

處取得極大值,極大值是,無極小值;

)要證,即證,

即證:,

,,則,

,則,令,則,

遞減,在遞增,

處取得極小值也是最小值

,,

遞增,在遞減,

處取得極大值也是最大值

故對一切的,恒成立,即;

,設,則,

,得,而,

遞增,又,,

故存在唯一,使得,即,即,

,,當,

遞減,在遞增,

處取極小值也是最小值,

,由,故,即,

遞減,

,即

從而,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓 的左焦點為,右頂點為,上頂點為

1)已知橢圓的離心率為,線段中點的橫坐標為,求橢圓的標準方程;

2)已知△外接圓的圓心在直線上,求橢圓的離心率的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調(diào)查了40名學生,根據(jù)學生的某次物理成績,得到班學生物理成績的頻率分布直方圖和班學生物理成績的頻數(shù)分布條形圖.

(Ⅰ)估計班學生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);

(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認為物理成績與班級有關?

物理成績的學生數(shù)

物理成績的學生數(shù)

合計

合計

附:列聯(lián)表隨機變量

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】五一期間,為了滿足廣大人民的消費需求,某共享單車公司欲投放一批共享單車,單車總數(shù)不超過100輛,現(xiàn)有AB兩種型號的單車:其中A型車為運動型,成本為400輛,騎行半小時需花費元;B型車為輕便型,成本為2400輛,騎行半小時需花費1若公司投入成本資金不能超過8萬元,且投入的車輛平均每車每天會被騎行2次,每次不超過半小時不足半小時按半小時計算,問公司如何投放兩種型號的單車才能使每天獲得的總收入最多,最多為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓的左、右焦點分別為,點在橢圓上,的面積為

1)求橢圓的標準方程;

2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求在點處的切線方程;

2若對于任意的,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標方程化為直角坐標方程.

(2)曲線是否相交?若相交,請求出公共弦長;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年11月6日-11日,第十二屆中國國際航空航天博覽會在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。

(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。

(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學期望。

查看答案和解析>>

同步練習冊答案