【題目】已知曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)曲線,是否相交?若相交,請求出公共弦長;若不相交,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定公差大于0的有限正整數(shù)等差數(shù)列,其中,為質(zhì)數(shù).甲、乙兩人輪流從個石子中取石子,規(guī)定:每次每人可取個石子,取走的石子不再放回,甲先取,取到最后一個石子者為勝.試問:誰有必勝策略?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時,證明:對一切的,都有恒成立;
(Ⅲ)當(dāng)時,函數(shù),有最小值,記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)且斜率為的直線與橢圓有兩個不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過點(diǎn)P(1,),直線l的方程為x=4.
(1)求橢圓的方程;
(2)已知橢圓內(nèi)一點(diǎn)E(1,0),過點(diǎn)E作一條斜率為k的直線與橢圓交于A,B兩點(diǎn),交直線l于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù),使得k1+k2=k3?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個零點(diǎn),求實數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線的兩條漸近線分別為.為坐標(biāo)原點(diǎn),動直線分別交直線于兩點(diǎn)(分別在第一四象限),且的面積恒為8.試探究:是否存在總與直線有且只有一個公共點(diǎn)的雙曲線?若存在,求出雙曲線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種常見疾病可分為Ⅰ、Ⅱ兩種類型.為了解該疾病類型與地域、初次患該疾病的年齡(以下簡稱初次患病年齡)的關(guān)系,在甲、乙兩個地區(qū)隨機(jī)抽取100名患者調(diào)查其疾病類型及初次患病年齡,得到如下數(shù)據(jù):
(1)從Ⅰ型疾病患者中隨機(jī)抽取1人,估計其初次患病年齡小于40歲的概率;
(2)記“初次患病年齡在的患者為“低齡患者”,初次患病年齡在的患者為“高齡患者”,根據(jù)表中數(shù)據(jù),解決以下問題:
將以下兩個列聯(lián)表補(bǔ)充完整,并判斷“地域”“初次患病年齡”這兩個變量中哪個變量與該疾病的類型有關(guān)聯(lián)的可能性更大.(直接寫出結(jié)論,不必說明理由)
(ii)記(i)中與該疾病的類型有關(guān)聯(lián)的可能性更大的變量為,問:是否有99.9%的把握認(rèn)為“該疾病的類型與有關(guān)?”
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的普通方程為,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求的參數(shù)方程與的直角坐標(biāo)方程;
(II)射線與交于異于極點(diǎn)的點(diǎn),與的交點(diǎn)為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com