在平面直角坐標(biāo)系中,已知拋物線,在此拋物線上一點(diǎn)到焦點(diǎn)的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準(zhǔn)線與軸交于點(diǎn),過點(diǎn)斜率為的直線與拋物線交于兩點(diǎn).是否存在這樣的,使得拋物線上總存在點(diǎn)滿足,若存在,求的取值范圍;若不存在,說明理由.

(1);(2)存在這樣的,且的取值范圍為.

解析試題分析:(1)由拋物線準(zhǔn)線方程可得,從而得出拋物線的方程;
(2)設(shè),,聯(lián)立直線與拋物線的方程整理得一元二次方程,由判別式得出的取值范圍,并根據(jù)韋達(dá)定理得,.然后由,進(jìn)而得到,根據(jù)判別式確定的取值范圍即可.  
試題解析:(1)拋物線準(zhǔn)線方程是,    
,               
故拋物線的方程是.                            
(2)設(shè),,
, 
.
,                                 
,同理
,
即:,                              
,                                      
,得,
得,
的取值范圍為           
考點(diǎn):拋物線的定義;拋物線與直線的綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C: 的焦點(diǎn)為F,ABQ的三個(gè)頂點(diǎn)都在拋物線C上,點(diǎn)M為AB的中點(diǎn),.(1)若M,求拋物線C方程;(2)若的常數(shù),試求線段長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點(diǎn),G,H分別是線段ON,CN的中點(diǎn).
(1)證明:直線EG與FH的交點(diǎn)L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:有兩個(gè)不同的交點(diǎn)P,Q,直線l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T,求的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左,右兩個(gè)頂點(diǎn)分別為、.曲線是以、兩點(diǎn)為頂點(diǎn),離心率為的雙曲線.設(shè)點(diǎn)在第一象限且在曲線上,直線與橢圓相交于另一點(diǎn)
(1)求曲線的方程;
(2)設(shè)、兩點(diǎn)的橫坐標(biāo)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的短軸長(zhǎng)為,且斜率為的直線過橢圓的焦點(diǎn)及點(diǎn)
(1)求橢圓的方程;
(2)已知直線過橢圓的左焦點(diǎn),交橢圓于點(diǎn)P、Q.
(ⅰ)若滿足為坐標(biāo)原點(diǎn)),求的面積;
(ⅱ)若直線與兩坐標(biāo)軸都不垂直,點(diǎn)軸上,且使的一條角平分線,則稱點(diǎn)為橢圓的“特征點(diǎn)”,求橢圓的特征點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長(zhǎng)半軸長(zhǎng)等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,離心率為;雙曲線的左右焦點(diǎn)分別為,離心率為,已知,且.
(1)求的方程;
(2)過點(diǎn)作的不垂直于軸的弦,的中點(diǎn),當(dāng)直線交于兩點(diǎn)時(shí),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知,為雙曲線左,右焦點(diǎn),以雙曲線右支上任意一點(diǎn)P為圓心,以為半徑的圓與以為圓心,為半徑的圓內(nèi)切,則雙曲線兩條漸近線的夾角是

查看答案和解析>>

同步練習(xí)冊(cè)答案