已知橢圓的左,右兩個頂點分別為、.曲線是以、兩點為頂點,離心率為的雙曲線.設點在第一象限且在曲線上,直線與橢圓相交于另一點.
(1)求曲線的方程;
(2)設、兩點的橫坐標分別為,,證明:.
(1);(2)詳見解析.
解析試題分析:(1)由橢圓的左右頂點分別為可得,,又由雙曲線是為頂點,故可設雙曲線的方程為,再由條件中雙曲線離心率為,可建立關于的方程,從而得到雙曲線的方程為;(2)根據(jù)題意可設直線的方程為,將直線方程與橢圓方程聯(lián)立求,,消去后可得:,解得或,因此,同理,將直線方程與雙曲線方程聯(lián)立,消去后可得
,從而得證. .
試題解析:(1)依題意可得,,∴設雙曲線的方程為,
又∵雙曲線的離心率為,∴,即,∴雙曲線的方程為;
(2)設點,(,,),設直線的方程為,
聯(lián)立方程組,整理得:或,
∴, 同理可得,聯(lián)立方程組,∴. .
考點:1.雙曲線的標準方程;2.直線與圓錐曲線相交綜合題.
科目:高中數(shù)學 來源: 題型:解答題
已知圓G:經過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知拋物線:,在此拋物線上一點到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準線與軸交于點,過點斜率為的直線與拋物線交于、兩點.是否存在這樣的,使得拋物線上總存在點滿足,若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的對稱中心在坐標原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點M,N滿足,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設橢圓的左右焦點為,上頂點為,點關于對稱,且
(1)求橢圓的離心率;
(2)已知是過三點的圓上的點,若的面積為,求點到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個不同的交點A和B,且·>2(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設橢圓的左、右焦點分別為,點在橢圓上,,,的面積為.
(1)求該橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com