【題目】已知函數(shù),其中,.
(1)若,求函數(shù)的單調(diào)減區(qū)間;
(2)若數(shù)的極值點(diǎn)是,求b、c的值;
(3)若,曲線在處的切線斜率為,求證:的極大值大于.
【答案】(1)單調(diào)減區(qū)間為(2),(3)證明見解析
【解析】
(1)計(jì)算導(dǎo)數(shù),由確定減區(qū)間.
(2)由,可求得,注意即可;
(3)由所以,得.由于,則,極大值點(diǎn)必是的較小根,設(shè)其為,則有,再結(jié)合,可求得的取值范圍,計(jì)算,可利用換元法及導(dǎo)數(shù)的知識(shí)得證.
(1)因?yàn)?/span>,
所以,
故.
令,即,
解得,
所以函數(shù)的單調(diào)減區(qū)間為.
(2)因?yàn)?/span>,
所以.
因?yàn)?/span>是函數(shù)的極值點(diǎn),
所以是方程的實(shí)數(shù)根,
故,解得或,
又因?yàn)?/span>,所以,.
(3)若,由(2)知,
則.
因?yàn)榍在處的切線斜率為,
所以,即.
又因?yàn)?/span>,所以.
設(shè)的較小的根為,
則,即.
由及,得,解得,
則的極大值為
令,則.
所以,
故,在上恒成立,
所以,在上為減函數(shù),
故,即的極大值大于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng),前項(xiàng)和為,且滿足.
(1)若數(shù)列為遞增數(shù)列,求實(shí)數(shù)的取值范圍;
(2)若,數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)甲、乙兩班共有25名學(xué)生報(bào)名參加了一項(xiàng) 測試.這25位學(xué)生的考分編成的莖葉圖,其中有一個(gè)數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來表示),但他清楚地記得兩班學(xué)生成績的中位數(shù)相同.
(Ⅰ)求這兩個(gè)班學(xué)生成績的中位數(shù)及x的值;
(Ⅱ)如果將這些成績分為“優(yōu)秀”(得分在175分 以上,包括175分)和“過關(guān)”,若學(xué)校再從這兩個(gè)班獲得“優(yōu)秀”成績的考生中選出3名代表學(xué)校參加比賽,求這3人中甲班至多有一人入選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓: 上, 是橢圓的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物公司將A型病毒疫苗用100只小白鼠進(jìn)行科研和臨床試驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如表:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射 | 10 | x | A |
注射 | 40 | y | B |
總計(jì) | 50 | 50 | 100 |
現(xiàn)從所有試驗(yàn)的小白鼠中任取一只,取得注射疫苗小白鼠的概率為.
(1)能否有99.9%的把握認(rèn)為注射此型號(hào)疫苗有效?
(2)現(xiàn)從感染病毒的小白鼠中任取3只進(jìn)行病理分析,記已注射疫苗的小白鼠只數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績x與物理成績y如下表:
數(shù)據(jù)表明y與x之間有較強(qiáng)的線性關(guān)系.
(1)求y關(guān)于x的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績?yōu)?/span>110分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績;
(3)本次考試中,規(guī)定數(shù)學(xué)成績達(dá)到125分為優(yōu)秀,物理成績達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為50%和60%,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù).
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數(shù)學(xué)家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來.例如計(jì)算,將被乘數(shù)89計(jì)入上行,乘數(shù)65計(jì)入右行.然后以乘數(shù)65的每位數(shù)字乘被乘數(shù)89的每位數(shù)字,將結(jié)果計(jì)入相應(yīng)的格子中,最后從右下方開始按斜行加起來,滿十向上斜行進(jìn)一,如圖,即得5785.類比此法畫出的表格,若從表內(nèi)(表周邊數(shù)據(jù)不算在內(nèi))任取一數(shù),則恰取到奇數(shù)的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com