【題目】已知橢圓: 經(jīng)過點(diǎn),且離心率為.
(I)求橢圓的方程;
(II)若一組斜率為的平行線,當(dāng)它們與橢圓相交時(shí),證明:這組平行線被橢圓截得的線段的中點(diǎn)在同一條直線上.
【答案】(Ⅰ) (Ⅱ)見解析
【解析】試題分析:(Ⅰ)由經(jīng)過點(diǎn),可得,根據(jù)離心率為,結(jié)合可得,從而可得橢圓的方程;(Ⅱ) 設(shè)直線與橢圓的兩個(gè)交點(diǎn)坐標(biāo)分別為 , ,它們的中點(diǎn)坐標(biāo)為.由,兩式相減,結(jié)合, , ,化簡(jiǎn)可得,所以這組平行線被橢圓截得的線段的中點(diǎn)在同一條直線上.
試題解析:(Ⅰ)由已知可得, , 又,可得, , 所以橢圓的方程為.
(Ⅱ) 證明:設(shè)直線與橢圓的兩個(gè)交點(diǎn)坐標(biāo)分別為 , ,它們的中點(diǎn)坐標(biāo)為.由兩式相減可得, ,由已知,所以,故直線被橢圓截得的線段的中點(diǎn)都在直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 的圖象向左平移 個(gè)單位,再向下平移4個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)g(x)的圖象( )
A.關(guān)于點(diǎn)(﹣2,0)對(duì)稱
B.關(guān)于點(diǎn)(0,﹣2)對(duì)稱
C.關(guān)于直線x=﹣2對(duì)稱
D.關(guān)于直線x=0對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: (其中為圓心)上的每一點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得到曲線.
(1)求曲線的方程;
(2)若點(diǎn)為曲線上一點(diǎn),過點(diǎn)作曲線的切線交圓于不同的兩點(diǎn)(其中在的右側(cè)),已知點(diǎn).求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為2,有一個(gè)銳角為60°的菱形ABCD,沿著較短的對(duì)角線BD對(duì)折,使得,O為BD的中點(diǎn).
(Ⅰ)求證:
(Ⅱ)求三棱錐的體積;
(Ⅲ)求二面角A-BC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為正實(shí)數(shù).
(1)若函數(shù)在處的切線斜率為2,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)有兩個(gè)極值點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x+3|,a∈R.
(1)當(dāng)a=﹣1時(shí),解不等式f(x)≤1;
(2)若當(dāng)x∈[0,3]時(shí),f(x)≤4,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為, 為的中點(diǎn), 為線段上的動(dòng)點(diǎn),過點(diǎn), , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號(hào)).
①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;
③當(dāng)時(shí), 與的交點(diǎn)滿足;
④當(dāng)時(shí), 為五邊形;
⑤當(dāng)時(shí), 的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)到點(diǎn)和直線的距離相等的點(diǎn)的軌跡為曲線,則曲線的方程為_______;若直線與曲線相交于不同兩點(diǎn), ,與圓相切于點(diǎn),且為線段的中點(diǎn).在的變化過程中,滿足條件的直線有條,則的所有可能值為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆江西省南昌市高三第一輪】已知分別為三個(gè)內(nèi)角的對(duì)邊,且.
(Ⅰ)求;
(Ⅱ)若為邊上的中線, , ,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com