【題目】已知直線y=x+b與橢圓 +y2=1相交于A,B兩個不同的點.
(1)求實數(shù)b的取值范圍;
(2)已知弦AB的中點P的橫坐標(biāo)是- ,求b的值.
【答案】
(1)解:將y=x+b 代入 +y2=1,消去y,整理得3x2+4bx+2b2﹣2=0
∵直線y=x+b與橢圓 +y2=1相交于A,B兩個不同的點
∴△=16b2﹣12(2b2﹣2)=24﹣8b2>0,∴﹣
(2)解:設(shè)A(x1,y1),B(x2,y2)
由(1)得x1+x2=﹣ =﹣ ×2,得到b=1,滿足﹣ .故b=1
【解析】(1)將y=x+b 代入 +y2=1,消去y,整理得3x2+4bx+2b2﹣2=0,由△=16b2﹣12(2b2﹣2)=24﹣8b2>0 即可(2)設(shè)A(x1 , y1),B(x2 , y2),由(1)得x1+x2=﹣ =﹣ ×2,可得b.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為[﹣1,2],則函數(shù)g(x)=f(2x﹣ )的定義域為( )
A.[ , ]
B.[1, ]
C.[﹣1, ]
D.[﹣1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+3.
(1)若f(x)在(﹣∞, ]是減函數(shù),在[ ,+∞)是增函數(shù),求函數(shù)f(x)在區(qū)間[﹣1,5]的最大值和最小值.
(2)求實數(shù)a的取值范圍,使f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn),G分別為A1B1 , BB1 , B1C1的中點,則AC1與D1E所成角的余弦值為 , AC1與平面EFG所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)
(1)求證:對任意m∈R,直線l與⊙C恒有兩個交點;
(2)求直線l被⊙C截得的線段的最短長度,及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,當(dāng)點M(x,y)在y=f(x)的圖象上運動時,點N(x﹣2,ny)在函數(shù)y=gn(x)的圖象上運動(n∈N*).
(1)求y=gn(x)的表達(dá)式;
(2)若方程g1(x)=g2(x﹣2+a)有實根,求實數(shù)a的取值范圍;
(3)設(shè) ,函數(shù)F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域為 ,求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別為雙曲線C: =1的左、右焦點,若存在過F1的直線分別交雙曲線C的左、右支于A,B兩點,使得∠BAF2=∠BF2F1 , 則雙曲線C的離心率e的取值范圍是( )
A.(3,+∞)
B.(1,2+ )
C.(3,2+ )
D.(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中, 平面, , , ,點在棱上,且.建立如圖所示的空間直角坐標(biāo)系.
(1)當(dāng)時,求異面直線與的夾角的余弦值;
(2)若二面角的平面角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2﹣3x﹣3y+3=0,圓C2:x2+y2﹣2x﹣2y=0.
(1)求兩圓的公共弦所在的直線方程及公共弦長.
(2)求過兩圓交點且面積最小的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com