【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn),G分別為A1B1 , BB1 , B1C1的中點(diǎn),則AC1與D1E所成角的余弦值為 , AC1與平面EFG所成角的正弦值為 .
【答案】;
【解析】解:建立如圖所示的坐標(biāo)系,
設(shè)正方體的棱長為2,可得A(2,0,0),C1(0,2,2),D1(0,0,2),E(2,1,2),F(xiàn)(2,2,1),G(1,2,2),則
=(﹣2,2,2), =(2,1,0),
∴AC1與D1E所成角的余弦值為| |= ;
平面EFG的一個法向量為(2,2,2),AC1與平面EFG所成角的正弦值為 = ,
所以答案是 ; .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個平面內(nèi),沒有公共點(diǎn),以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的極值;
(2)當(dāng)時,若存在實(shí)數(shù), 使得不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=1﹣ .
(1)求證:f(x)是定義域內(nèi)的增函數(shù);
(2)當(dāng)x∈[0,1]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點(diǎn)的等腰直角三角形,點(diǎn)F是PB的中點(diǎn),點(diǎn)E是邊BC上的任意一點(diǎn).
(1)求證:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),則函數(shù)g(x)=f( )+f(x﹣1)的定義域?yàn)椋?/span> )
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+b與橢圓 +y2=1相交于A,B兩個不同的點(diǎn).
(1)求實(shí)數(shù)b的取值范圍;
(2)已知弦AB的中點(diǎn)P的橫坐標(biāo)是- ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(2)=0,則 <0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= + 的定義域?yàn)椋?/span> )
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com