【題目】已知函數(shù).
(1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),試判斷與的大小關(guān)系并證明.
【答案】(1)答案不唯一,具體見(jiàn)解析(2),詳見(jiàn)解析
【解析】
(1)由已知令,得,記,則函數(shù)的極值點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)與y=2a的交點(diǎn)個(gè)數(shù),再利用導(dǎo)數(shù)得到在上是增函數(shù),在上是減函數(shù),且,對(duì)a分情況討論,即可得到函數(shù)的極值點(diǎn)個(gè)數(shù)情況;
(2)由已知令,可得,記,利用導(dǎo)數(shù)得到的單調(diào)性,可得,當(dāng)時(shí),,所以當(dāng)即時(shí)有2個(gè)極值點(diǎn),從而得到,所以,即.
解:(1),
令,得,記,則,
令,得;令,得,
∴在上是增函數(shù),在上是減函數(shù),且,
∴當(dāng)即時(shí),無(wú)解,∴無(wú)極值點(diǎn),
當(dāng)即時(shí),有一解,,即,
恒成立,無(wú)極值點(diǎn),
當(dāng),即時(shí),有兩解,有2個(gè)極值點(diǎn),
當(dāng)即時(shí),有一解,有一個(gè)極值點(diǎn).
綜上所述:當(dāng),無(wú)極值點(diǎn);時(shí),有2個(gè)極值點(diǎn);
當(dāng),有1個(gè)極值點(diǎn);
(2),,
令,則,,
記,則,
由得,由,得,
在上是增函數(shù),在上是減函數(shù),
,當(dāng)時(shí),,
∴當(dāng)即時(shí),
有2個(gè)極值點(diǎn),
由,
得,
,
不妨設(shè)則,,
又在上是減函數(shù),
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的方程為,則下列結(jié)論正確的是( )
A.當(dāng)時(shí),曲線為橢圓,其焦距為
B.當(dāng)時(shí),曲線為雙曲線,其離心率為
C.存在實(shí)數(shù)使得曲線為焦點(diǎn)在軸上的雙曲線
D.當(dāng)時(shí),曲線為雙曲線,其漸近線與圓相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)(為自然對(duì)數(shù)的底數(shù),),函數(shù),給出下列結(jié)論:
①函數(shù)的圖象在處的切線在軸的截距為
②函數(shù)是奇函數(shù),且在上單調(diào)遞增;
③函數(shù)存在唯一的極小值點(diǎn),其中,且;
④函數(shù)存在兩個(gè)極小值點(diǎn),和兩個(gè)極大值點(diǎn),且.
其中所有正確結(jié)論的序號(hào)是( )
A.①②③B.①④C.①③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),直線經(jīng)過(guò)點(diǎn),且傾斜角為.
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;
(2)直線與曲線交于兩點(diǎn),直線的參數(shù)方程為(t為參數(shù)),直線與曲線交于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面向量,共線的充要條件是( )
A.
B.,兩向量中至少有一個(gè)為零向量
C.λ∈R,
D.存在不全為零的實(shí)數(shù)λ1,λ2,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中a為正實(shí)數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:1(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為A(0,﹣1),離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x﹣1)(k0)與橢圓C交于不同的兩點(diǎn)P,Q,線段PQ的中點(diǎn)為M,點(diǎn)B(1,0),求證:點(diǎn)M不在以AB為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,、、分別為棱、、的中點(diǎn),平面,,,,則( )
A.三棱錐的體積為
B.直線與直線垂直
C.平面截三棱錐所得的截面面積為
D.點(diǎn)與點(diǎn)到平面的距離相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com