【題目】橢圓的中心在原點(diǎn),焦點(diǎn)分別在軸與軸上,它們有相同的離心率,并且的短軸為的長(zhǎng)軸,的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積是.

(1)求橢圓的方程;

(2)設(shè)是橢圓上非頂點(diǎn)的動(dòng)點(diǎn),與橢圓長(zhǎng)軸兩個(gè)頂點(diǎn)的連線,分別與橢圓交于,點(diǎn).

(i)求證:直線,斜率之積為常數(shù);

(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說(shuō)明理由.

【答案】(1),.(2)(i) 見(jiàn)解析(ii).

【解析】試題分析:(1)橢圓離心率,又,所以,設(shè),則根據(jù)題中條件可設(shè),于是根據(jù)橢圓的對(duì)稱性可知,四個(gè)焦點(diǎn)構(gòu)成的四邊形為菱形,面積,解得,可以得到橢圓,;(2)(i)本問(wèn)考查圓錐曲線中的定點(diǎn)、定值問(wèn)題,分析題意,設(shè),而,,所以,,于是,又因?yàn)?/span>,代入上式易求;(ii)根據(jù)(i)問(wèn),可先證明為定值,再證明為定值,于是可以得到為定值,由于,,所以可以得為定值.

試題解析:(1)依題意,設(shè),,由對(duì)稱性,四個(gè)焦點(diǎn)構(gòu)成的四邊形為菱形,且面積,解得:.

所以橢圓.

(2)(i)設(shè),則,.

,.

所以:.

直線斜率之積為常數(shù).

(ii)設(shè),則.

,

所以:,同理:,

所以:,由,,結(jié)合(i)有

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB= AB. (Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)方程為.

(1)求點(diǎn)的直角坐標(biāo),并求曲線的普通方程;

(2)設(shè)直線與曲線的兩個(gè)交點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若 且f(x)在區(qū)間 上有最小值,無(wú)最大值,則ω的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子里有完全相同的3只紅球和4只黑球,今從袋子里隨機(jī)取球.

)若有放回地取3次,每次取一個(gè)球,求取出2個(gè)紅球1個(gè)黑球的概率;

)若無(wú)放回地取3次,每次取一個(gè)球,若取出每只紅球得2分,取出每只黑球得1分,求得分的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測(cè)指標(biāo)劃分為:指標(biāo)大于或者等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

元件甲

8

12

40

32

8

元件乙

7

18

40

29

6

(1)試分別估計(jì)元件甲、乙為正品的概率;

(2)生產(chǎn)一件元件甲,若是正品可盈利40元,若是次品則虧損5元,生產(chǎn)一件元件乙,若是正品可盈利50元,若是次品則虧損10元.在(1)的前提下:

(i)記為生產(chǎn)1件甲和1件乙所得的總利潤(rùn),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(ii)求生產(chǎn)5件元件乙所獲得的利潤(rùn)不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對(duì)稱中心為M(x0 , y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3﹣3x2 , 則可求出f( )+f( )+f( )+…+f( )+f( )的值為(
A.4029
B.﹣4029
C.8058
D.﹣8058

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知右焦點(diǎn)為的橢圓關(guān)于直線對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)且不垂直于軸的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.證明:直線軸的交點(diǎn)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個(gè)整數(shù),則實(shí)數(shù)k的取值范圍為(
A.( ﹣2,
B.( ﹣2, ]
C.( , ﹣1]
D.( , ﹣1)

查看答案和解析>>

同步練習(xí)冊(cè)答案