【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象(
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位

【答案】D
【解析】解:∵函數(shù) =sin(2x+ )=sin2(x+ ),∴將函數(shù)y=sin2x的圖象向左平移 個單位,即可得到函數(shù) =sin(2x+ )的圖象,
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組6個人排隊照相留念.

(1)若分成兩排照相,前排2人,后排4人,有多少種不同的排法?

(2)若分成兩排照相,前排2人,后排4人,但其中甲必須在前排,乙必須在后排,有多少種排法?

(3)若排成一排照相,甲、乙兩人必須在一起,有多少種不同的排法?

(4)若排成一排照相,其中甲必在乙的右邊,有多少種不同的排法?

(5)若排成一排照相,其中有3名男生3名女生,且男生不能相鄰有多少種排法?

(6)若排成一排照相,且甲不站排頭乙不站排尾,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則p、q均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,(其中).

(1)時,求函數(shù)的極值;

(2)證:存在,使得內(nèi)恒成立,且方程內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)如果對于任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,過 的直線l與橢圓交于A,B兩點,過Q(x0 , 0)(|x0|<a)的直線l'與橢圓交于M,N兩點.

(1)當(dāng)l的斜率是k時,用a,b,k表示出|PA||PB|的值;
(2)若直線l,l'的傾斜角互補(bǔ),是否存在實數(shù)x0 , 使 為定值,若存在,求出該定值及x0 , 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】社會在對全日制高中的教學(xué)水平進(jìn)行評價時,常常將被清華北大錄取的學(xué)生人數(shù)作為衡量的標(biāo)準(zhǔn)之一.重慶市教委調(diào)研了某中學(xué)近五年(2013年-2017年)高考被清華北大錄取的學(xué)生人數(shù),制作了如下所示的表格(設(shè)2013年為第一年).

年份(第年)

人數(shù)(人)

(1)試求人數(shù)關(guān)于年份的回歸直線方程;

(2)在滿足(1)的前提之下,估計2018年該中學(xué)被清華北大錄取的人數(shù)(精確到個位);

(3)教委準(zhǔn)備在這五年的數(shù)據(jù)中任意選取兩年作進(jìn)一步研究,求被選取的兩年恰好不相鄰的概率.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x)(萬
元),若年產(chǎn)量不足80千件,C(x)的圖象是如圖的拋物線,此時C(x)<0的解集為(﹣30,0),且C(x)的最小值是﹣75,若年產(chǎn)量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊答案