精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調遞減區(qū)間為(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

【答案】D
【解析】解:由函數f(x)=cos(ωx+)的部分圖象,可得函數的周期為 =2( )=2,∴ω=π,f(x)=cos(πx+).再根據函數的圖象以及五點法作圖,可得 += ,k∈z,即= ,f(x)=cos(πx+ ).
由2kπ≤πx+ ≤2kπ+π,求得 2k﹣ ≤x≤2k+ ,故f(x)的單調遞減區(qū)間為( ,2k+ ),k∈z,
故選:D.
由周期求出ω,由五點法作圖求出φ,可得f(x)的解析式,再根據余弦函數的單調性,求得f(x)的減區(qū)間.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|xex+1|,關于x的方程f2(x)+2sinαf(x)+cosα=0有四個不等實根,sinα﹣cosα≥λ恒成立,則實數λ的最大值為(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣kx2(k∈R)有四個不同的零點,則實數k的取值范圍是(
A.k<0
B.k<1
C.0<k<1
D.k>1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數 的圖象,只需將函數y=sin2x的圖象(
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數:f(x)=﹣x3﹣3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x﹣1)﹣b+a+3,判斷h(x)的奇偶性,并討論h(x)的單調性;
(2)若g(x)=|f(x)|,設M(a,b)為g(x)在[﹣2,0]的最大值,求M(a,b)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= sin ,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點,=AC=CB=AB.

)證明://平面;

)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)=x2+2 f(x)dx,則 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】動物園需要用籬笆圍成兩個面積均為50 的長方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動空間,垂直于墻的邊長不小于2m,每個長方形平行于墻的邊長也不小于2m

1)設所用籬笆的總長度為l,垂直于墻的邊長為x.試用解析式將l表示成x的函數,并確定這個函數的定義域;

2)怎樣圍才能使得所用籬笆的總長度最小?籬笆的總長度最小是多少?

查看答案和解析>>

同步練習冊答案