(本小題滿分12分)某商店商品每件成本10元,若售價為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價的降低值(單位:元,)的關系是t=.
(1)將每天的商品銷售利潤y表示成的函數(shù);
(2)如何定價才能使每天的商品銷售利潤最大?
(1) ;(2)17.

試題分析:(1)因為每天的商品銷售利潤y等于每件的利潤乘以每天生產(chǎn)的件數(shù).因為降低價格,銷售量可以增加,且每天多賣出的商品件數(shù)t.而t與商品單價的降低值(單位:元,)的關系是t=.所以可得每天的利潤與單價降低值的關系式.
(2)由(1)求得的函數(shù)關系式,通過求導求出函數(shù)的極值點,以及極大值.在對比臨界點的值從而可得函數(shù)的最大值以及對應的的值.
試題解析:(1)設商品降價元,記商品每天的獲利為,則依題意得

    ()   -6分
(2)根據(jù)(1),有
變化時,的變化如下表:


2

8



0

0



極小

極大

時,取得極大值.因為,
所以定價為元能使一天的商品銷售利潤最大.  12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

上海某化學試劑廠以x千克/小時的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是元.
(1)要使生產(chǎn)運輸該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)運輸900千克該產(chǎn)品獲得的利潤最大,問:該工廠應該選取何種生產(chǎn)速度?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知冪函數(shù)的圖象經(jīng)過點
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)判斷函數(shù)在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,F(xiàn)(x)=
(1)若f(-1)=0,且函數(shù)f(x) ≥0的對任意x屬于一切實數(shù)成立,求F(x)的表達式;
(2)在 (1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)滿足,當時,,當時, 的最大值為-4.
(I)求實數(shù)的值;
(II)設,函數(shù).若對任意的,總存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義在R上的函數(shù),滿足,則的取值范圍是    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在定義域內(nèi)既是奇函數(shù)又為增函數(shù)的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)上是減函數(shù),則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義在R上的函數(shù)滿足,,且當,時,.
(1)          ;(2)           .

查看答案和解析>>

同步練習冊答案