已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,F(xiàn)(x)=
(1)若f(-1)=0,且函數(shù)f(x) ≥0的對任意x屬于一切實數(shù)成立,求F(x)的表達(dá)式;
(2)在 (1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(1),  (2) ,

試題分析:(1)解析式的求法,可得a與b的關(guān)系,再由函數(shù)的值域求出各自的值,最后得出解析式。
(2)由(1)已知的解析式,進(jìn)一步表示出出的解析式,然后得出二次函數(shù)的對稱軸,利用在閉區(qū)間上的單調(diào)性得出對稱軸的范圍,進(jìn)而求出實數(shù)k的取值范圍。
試題解析:(1)
,的值域為,



(2)


對稱軸,當(dāng)
時,是單調(diào)函數(shù)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某商店商品每件成本10元,若售價為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價的降低值(單位:元,)的關(guān)系是t=.
(1)將每天的商品銷售利潤y表示成的函數(shù);
(2)如何定價才能使每天的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在上的偶函數(shù),它在上是減函數(shù),若,則的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)在區(qū)間上為減函數(shù)的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列四個命題:
①函數(shù)為奇函數(shù);
②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點;
③函數(shù)的值域是;
④若函數(shù)的定義域為,則函數(shù)的定義域為;
⑤函數(shù)的單調(diào)遞增區(qū)間是.
其中正確命題的序號是           .(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是
A.B.y=-x 3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)定義域為,且函數(shù)的圖象關(guān)于直線對稱,當(dāng) 時,,(其中的導(dǎo)函數(shù)),若,的大小關(guān)系是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)為偶函數(shù),且上遞減,設(shè),,,則的大小關(guān)系正確的是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案