【題目】為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”、“演講社”三個金牌社團(tuán)中抽6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見下表(單位:人):

社團(tuán)名稱

成員人數(shù)

抽取人數(shù)

話劇社

50

a

創(chuàng)客社

150

b

演講社

100

c

(1)求的值;

(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長,求這2人來自不同社團(tuán)的概率.

【答案】(I) ;(Ⅱ)

【解析】試題分析:

(1)利用分層抽樣的概率可得的值為;

(2)列出所有可能的事件,利用古典概型公式可得這2人來自不同社團(tuán)的概率為.

試題解析:

(I)

所以從“話劇社”,“創(chuàng)客社”,“演講社”三個社團(tuán)中抽取的人數(shù)分別是

(Ⅱ)設(shè)從“話劇社”,“創(chuàng)客社”,“演講社”抽取的6人分別為:

則從6人中抽取2人構(gòu)成的基本事件為: , , , , , , , , , , , 共15個

記事件為“抽取的2人來自不同社團(tuán)”.則事件包含的基本事件有:

, , , , , , , , 共11個

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,處的切線與直線平行.

1討論的單調(diào)性;

2,上恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足.

(1)求;

(2)設(shè)求數(shù)列通項(xiàng)公式;

(3)設(shè),不等式成立時,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校名教師參加我縣六城同創(chuàng)干部職工進(jìn)網(wǎng)絡(luò),服務(wù)群眾進(jìn)社區(qū)活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組,第三組,第四組,第五組,得到的頻率分布直方圖如圖所示:

上表是年齡的頻數(shù)分布表.

(1)求正整數(shù)的值;

(2)根據(jù)頻率分布直方圖估計(jì)我校這名教師年齡的中位數(shù)和平均數(shù);

(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,其中的中點(diǎn).

(1)求證:

(2)求證:面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有一條光線從射出,并且經(jīng)軸上一點(diǎn)反射.

(1)求入射光線和反射光線所在的直線方程(分別記為);

(2)設(shè)動直線,當(dāng)點(diǎn)的距離最大時,求所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小值;

(2)設(shè),討論函數(shù)的單調(diào)性;

(3)若斜率為的直線與曲線交于,兩點(diǎn),其中,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由三棱柱和四棱錐構(gòu)成的幾何體中, 平面 , ,平面平面

(Ⅰ)求證: ;

(Ⅱ)若為棱的中點(diǎn),求證: 平面

(Ⅲ)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,

1若曲線在點(diǎn)處的切線為,求的值;

2討論函數(shù)的單調(diào)性;

3設(shè)函數(shù),若至少存在一個,使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案