【題目】設(shè)有一條光線從射出,并且經(jīng)軸上一點反射.
(1)求入射光線和反射光線所在的直線方程(分別記為);
(2)設(shè)動直線,當(dāng)點到的距離最大時,求所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.
【答案】(1) (2)
【解析】試題分析:(1)由入射光線與反射光線的關(guān)系可知關(guān)于軸對稱故斜率互為相反數(shù)(2)∵恒過點,∴作于,則,∴當(dāng)時最大.即, 時點到的距離最大. 設(shè)所圍三角形的內(nèi)切圓的方程為,則,解得
試題解析:
(1)∵,∴.
∴入射光線所在的直線的方程為.
∵關(guān)于軸對稱,
∴反射光線所在的直線的方程為.
(2)∵恒過點,∴作于,
則,∴當(dāng)時最大.
即, 時點到的距離最大.
∵,∴,∴的方程為.
設(shè)所圍三角形的內(nèi)切圓的方程為,
則,解得 (或舍去),
∴所求的內(nèi)切圓方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
表中的數(shù)據(jù)顯示,與之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算關(guān)于的回歸方程.
回歸直線的斜率和截距的最小二乘估計公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:,0為坐標(biāo)原點.
(1)當(dāng)為何值時,曲線表示圓;
(2)若曲線與直線交于兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),數(shù)列滿足,(,).
(1)求數(shù)列的通項公式;
(2)設(shè),若對恒成立,求實數(shù)的取值范圍;
(3)是否存在以為首項,公比為(,)的數(shù)列,使得數(shù)列的每一項都是數(shù)列的不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了促進學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”、“演講社”三個金牌社團中抽6人組成社團管理小組,有關(guān)數(shù)據(jù)見下表(單位:人):
社團名稱 | 成員人數(shù) | 抽取人數(shù) |
話劇社 | 50 | a |
創(chuàng)客社 | 150 | b |
演講社 | 100 | c |
(1)求的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長,求這2人來自不同社團的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心在軸上,并且過兩點.
(1)求圓的方程;
(2)設(shè)直線與圓交于兩點,那么以為直徑的圓能否經(jīng)過原點,若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:()與橢圓:相交所得的弦長為
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是上異于原點的兩個不同點,直線和的傾斜角分別為和,當(dāng),變化且為定值()時,證明:直線恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請選做其中一題)
(1)請推導(dǎo)等差數(shù)列及等比數(shù)列前項和公式;
(2)如果你在海上航行,請設(shè)計一種測量海上兩個小島之間距離的方法并作圖說明;
(3)某工廠要建造一個長方形無蓋貯水池,其容積為4800立方米,深為3米,如果池底每平米的造價為150元,池壁每平米造價為120元,怎樣設(shè)計水池能使造價最低?最低總造價是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com