【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線.

)求圓的標(biāo)準(zhǔn)方程;

)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.

【答案】.

【解析】

試題分析:()求圓的方程,需要三個(gè)獨(dú)立條件,一般設(shè)標(biāo)準(zhǔn)式,代入三個(gè)條件,解方程組即可;本題也可設(shè)成圓的一般式 ,再將兩個(gè)點(diǎn)坐標(biāo)代入,解方程組可得.)涉及圓中弦長(zhǎng)問(wèn)題,一般利用垂徑定理,即將弦長(zhǎng)條件轉(zhuǎn)化為圓心到直線距離,再根據(jù)點(diǎn)到直線距離公式求直線斜率,注意驗(yàn)證直線斜率不存在的情形.

試題解析:解:()設(shè)圓的圓心坐標(biāo)為,

依題意,有,

解得,所以

所以圓的標(biāo)準(zhǔn)方程為.

)依題意,圓的圓心到直線的距離為,

1)若直線的斜率不存在,則,符合題意,此時(shí)直線的方程為.

2)若直線的斜率存在,設(shè)直線的方程為,即,則,解得.

此時(shí)直線的方程為

綜上,直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y∈R,滿足2≤y≤4﹣x,x≥1,則 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐 中,底面 為梯形, 底面 , .過(guò) 作一個(gè)平面 使得 平面 .

(1)求平面 將四棱錐 分成兩部分幾何體的體積之比;
(2)若平面 與平面 之間的距離為 ,求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中, 、 、 均為等邊三角形, .

(Ⅰ)求證: 平面 ;
(Ⅱ)求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中點(diǎn).

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤(rùn)÷保費(fèi)收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計(jì)平均收益率;

(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬(wàn)份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對(duì)應(yīng)數(shù)據(jù):

據(jù)此計(jì)算出的回歸方程為.

(i)求參數(shù)的估計(jì)值;

(ii)若把回歸方程當(dāng)作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家 和3個(gè)歐洲國(guó)家 中選擇2個(gè)國(guó)家去旅游.
(Ⅰ)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(Ⅱ)若從亞洲國(guó)家和歐洲國(guó)家中各任選1個(gè),求這2個(gè)國(guó)家包括 但不包括 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)從高三男生中隨機(jī)抽取100名學(xué)生,將他們的身高數(shù)據(jù)進(jìn)行整理,得到下側(cè)的頻率分布表.

組號(hào)

分組

頻率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合計(jì)

1.00

Ⅰ)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行體能測(cè)試,問(wèn)第3,4,5組每組各應(yīng)抽取多少名學(xué)生進(jìn)行測(cè)試;

Ⅱ)在(Ⅰ)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第3組中至少有一名學(xué)生被抽中的概率;

試估計(jì)該中學(xué)高三年級(jí)男生身高的中位數(shù)位于第幾組中,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x),f(0)=-2,且對(duì) ,y R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達(dá)式;
(2)已知關(guān)于x的不等式f(x)-ax+a+1 的解集為A,若A[2,3],求實(shí)數(shù)a的取值范圍;
(3)已知數(shù)列{ }中, ,記 ,且數(shù)列{ 的前n項(xiàng)和為
求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案