【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)是ρ=2asinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)若a=2,M為直線l與x軸的交點(diǎn),N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)若直線l被圓C截得的弦長(zhǎng)為 ,求a的值.

【答案】
(1)解:直線l的參數(shù)方程是 ,a=2時(shí),化為普通方程: (x﹣2).令y=0,解得x=2,可得M(2,0).圓C的極坐標(biāo)是ρ=2asinθ,即ρ2=4ρsinθ,可得直角坐標(biāo)方程:x2+y2﹣4y=0,即x2+(y﹣2)2=4.

|MC|=2 ,∴|MN|的最大值為2 +2.


(2)解:圓C的方程為:x2+(y﹣a)2=a2,直線l的方程為:4x+3y﹣4a=0,

圓心C到直線l的距離d= =

=2 ,解得a=


【解析】(1)直線l的參數(shù)方程是 ,a=2時(shí),化為普通方程: (x﹣2).可得M(2,0).圓C的極坐標(biāo)是ρ=2asinθ,即ρ2=4ρsinθ,利用互化公式可得直角坐標(biāo)方程,求出|MC|=2 ,可得|MN|的最大值為2 +r.(2)圓C的方程為:x2+(y﹣a)2=a2,直線l的方程為:4x+3y﹣4a=0,利用點(diǎn)到直線的距離公式與弦長(zhǎng)公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(Ⅰ)已知 ,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10;
(ii)求a7
(Ⅱ)2017年5月,北京召開(kāi)“一帶一路”國(guó)際合作高峰論壇.組委會(huì)將甲、乙、丙、丁、戊五名志愿者分配到翻譯、導(dǎo)游、禮儀、司機(jī)四個(gè)不同的崗位,每個(gè)崗位至少有一人參加,且五人均能勝任這四個(gè)崗位.
(i)若每人不準(zhǔn)兼職,則不同的分配方案有幾種?
(ii)若甲乙被抽調(diào)去別的地方,剩下三人要求每人必兼兩職,則不同的分配方案有幾種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)若,求的取值范圍;

3)設(shè)函數(shù),其中.若函數(shù)的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則下列說(shuō)法正確的(
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解喜好體育運(yùn)動(dòng)是否與性別有關(guān),某報(bào)記者隨機(jī)采訪50個(gè)路人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)
15

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

8

10

5

5

喜好人數(shù)

4

6

6

3

3


(1)在調(diào)查的結(jié)果中,喜好體育運(yùn)動(dòng)的女性有10人,不喜好體育運(yùn)動(dòng)的男性有5人,請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由;

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50


(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不喜好體育運(yùn)動(dòng)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望. 下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為,,,有以下結(jié)論:

①當(dāng)時(shí),甲走在最前面;

②當(dāng)時(shí),乙走在最前面;

③當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.

其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過(guò)智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬(wàn)元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬(wàn)元,但銀行需付下崗職員每人每年6萬(wàn)元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)

患流感

未患流感

服用藥

2

18

未服用藥

8

12

根據(jù)表中數(shù)據(jù),通過(guò)計(jì)算統(tǒng)計(jì)量K2= ,并參考以下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯(cuò)的概率不超過(guò)(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

同步練習(xí)冊(cè)答案