【題目】如圖,在多面體ABCDEF中,底面ABCD為正方形,平面AED⊥平面ABCD,AB= EA= ED,EF∥BD
(I)證明:AE⊥CD
(II)在棱ED上是否存在點(diǎn)M,使得直線AM與平面EFBD所成角的正弦值為 ?若存在,確定點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】解:(I)證明:∵四邊形ABCD是正方形,∴CD⊥AD, 又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,CD平面ABCD,
∴CD⊥平面AED,∵AE平面AED,
∴AE⊥CD.
(II)解:取AD的中點(diǎn)O,過(guò)O作ON∥AB交BC于N,連接EO,
∵EA=ED,∴OE⊥AD,又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,OE平面AED,
∴OE⊥平面ABCD,
以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O﹣xyz,如圖所示:
設(shè)正方形ACD的邊長(zhǎng)為2, ,
則A(1,0,0),B(1,2,0),D(﹣1,0,0),E(0,0,1),M(﹣λ,0,λ)
∴ =(﹣λ﹣1,0,λ), =(1,0,1), =(2,2,0),
設(shè)平面BDEF的法向量為 =(x,y,z),
則 ,即 ,令x=1得 =(1,﹣1,﹣1),
∴cos< >= = ,
令| |= ,方程無(wú)解,
∴棱ED上不存在點(diǎn)M,使得直線AM與平面EFBD所成角的正弦值為 .
【解析】(I)利用面面垂直的性質(zhì)得出CD⊥平面AED,故而AE⊥CD;(II)取AD的中點(diǎn)O,連接EO,以O(shè)為原點(diǎn)建立坐標(biāo)系,設(shè) ,求出平面BDEF的法向量 ,令|cos< >|= ,根據(jù)方程的解得出結(jié)論.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的性質(zhì)和空間角的異面直線所成的角的相關(guān)知識(shí)點(diǎn),需要掌握垂直于同一個(gè)平面的兩條直線平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,且圖象關(guān)于直線對(duì)稱.
(1)求的解析式;
(2) 若函數(shù)的圖象與直線在上只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線y=x2-2x—3與兩條坐標(biāo)軸的三個(gè)交點(diǎn)都在圓C上.若圓C與直線x-y+a=0交于A,B兩點(diǎn),
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若 (O為原點(diǎn)),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ ﹣2lna﹣k
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時(shí)f(x)的極值存在且與a無(wú)關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的(四舍五入精確到小數(shù)點(diǎn)后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分14分)已知函數(shù).
(Ⅰ)若函數(shù)在其定義域上是增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),求出的極值;
(Ⅲ)在(Ⅰ)的條件下,若在內(nèi)恒成立,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的最小值是,且,,求的值;
(2)若,且在區(qū)間上恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
B.已知相關(guān)變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個(gè)單位,則y平均增加4個(gè)單位
C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]為真命題
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),五邊形PABCD是由一個(gè)正方形與一個(gè)等腰三角形拼接而成,其中∠APD=120°,AB=2,現(xiàn)將△PAD進(jìn)行翻折,使得平面PAD⊥平面ABCD,連接PB,PC,所得四棱錐P﹣ABCD如圖(2)所示,則四棱錐P﹣ABCD的外接球的表面積為( )
A.
B.
C.
D.14π
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com