如圖,在直三棱柱(即側棱與底面垂直的三棱柱)中,

(I)若的中點,求證:平面平面
(II)若為線段上一點,且二面角的大小為,試確定的位置.

(I)略;(II)

解析試題分析:(I)可以轉為證線面垂直或利用空間向量證明面面垂直;(II)可利用的面積求也可利用空間向量求
試題解析:方法一:(I)證明:∵,∴.        
又由直三棱柱的性質知, 
平面,∴,            ①
的中點,可知,
,即,            ②
                                ③
由①②③可知平面, 
平面,故平面平面.  
(II)解:由(I)可知平面,在平面內過,交或其延長線于,連接,∴為二面角的平面角,   
.由知,,設,則.
的面積為,∴.  
解得,即.

方法二:(I)證明:如圖,以為坐標原點,所在的直線分別為軸建立空間直角坐標系,則
           
,得;         
同理可證,得.         
平面.             

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,正三棱柱中,點的中點.

(Ⅰ)求證: 平面;
(Ⅱ)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.

(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,重合后的點記為,構成一個三棱錐.

(1)請判斷與平面的位置關系,并給出證明;
(2)證明平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,AC為的直徑,D為的中點,E為BC的中點.

(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是矩形邊上的點,邊的中點,,現(xiàn)將沿邊折至位置,且平面平面.
⑴ 求證:平面平面;
⑵ 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,六棱錐的底面是邊長為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角為,求三棱錐高的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O點.
(I)求證:平面PBD丄平面PAC.
(II)當點A在平面PBD內的射影G恰好是ΔPBD的重心時,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,△是等邊三角形, ,,,分別是,的中點,將△沿折疊到的位置,使得.
   
(1)求證:平面平面;
(2)求證:平面.

查看答案和解析>>

同步練習冊答案