如圖,△是等邊三角形, ,,,,分別是,,的中點(diǎn),將△沿折疊到的位置,使得.
(1)求證:平面平面;
(2)求證:平面.
(1)通過證明所以平面. 同理平面,來得到面面平行。
(2)根據(jù)題意,由勾股定理的逆定理,可得,以及所以平面.來的得到線面垂直。
解析試題分析:證明:(1)因為,分別是,的中點(diǎn),
所以.因為平面,平面,
所以平面. 2分
同理平面. 4分
又因為, 5分
所以平面平面. 6分
(2)因為,所以.
又因為,且,
所以平面. 8分
因為平面,
所以. 9分
因為△是等邊三角形,,
不防設(shè),則 ,
可得. 11分
由勾股定理的逆定理,可得. 12分
所以平面. 13分
考點(diǎn):面面平行以及線面垂直
點(diǎn)評:主要是考查了空間中線面垂直以及面面平行的 運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,
(I)若為的中點(diǎn),求證:平面平面;
(II)若為線段上一點(diǎn),且二面角的大小為,試確定的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點(diǎn),為中點(diǎn),為上一個動點(diǎn).
(Ⅰ)確定點(diǎn)的位置,使得;
(Ⅱ)當(dāng)時,求二面角的平面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF平面EFDC,設(shè)AD中點(diǎn)為P.
(Ⅰ)當(dāng)E為BC中點(diǎn)時,求證:CP∥平面ABEF;
(Ⅱ)設(shè)BE=x,當(dāng)x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中, ,,,點(diǎn)是的中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)設(shè)點(diǎn)在線段上,,且使直線和平面所成的角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在三棱錐中,平面,,分別是的中點(diǎn),,與交于,與交于點(diǎn),連接。
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com